合否判定できない判別分析の総括

- 分散共分散行列によるLDFとQDFの使命の終焉 -

成蹊大学 経済学部 新村秀一

分散共分散による判別分析の問題

- 2群が多次元正規分布し分散共分散行列が等しいと仮定すれば、 分散比最大化基準によるLDFが、容易に2群を表す正規分布 N(m₁,s₁)とN(m₂,s₂)の対数尤度で定式化.
- 2群の分散共分散行列による判別手法
 - 2群の分散共分散行列が等しい場合, LDF: f(x)={x-(m₁+m₂)/2}'∑-¹(m₁-m₂)
 - 2群の分散共分散行列が等しくない場合, 2次判別関数(QDF) $f(x)=x'(\sum_2^{-1}-\sum_1^{-1})\ x/2+(m_1'\ \Sigma_1^{-1}-m_2\Sigma_2^{-1})x+c$
 - マハラノビスの汎距離から、多群判別や品質管理のMT理論D=SQRT ((x-m)' ∑⁻¹(x-m))

この式に重大な問題が見過ごされてきた!

- 試験の合否判定を、得点を説明変数としてQDFで判別すると、合格群の全てが不合格群に誤判別される理由が解明できた
- 試験の合否判定を大問4問で行い合格最低点を50点 F=T1+T2+T3+T4-49.5で、f>0なら合格、f<0なら不合格

1. はじめに

- 判別分析は、Fisher[1]が2群の分散比の最大化から LDF(線形判別関数)を定式化したが、正規分布の対 数尤度から同じLDFがスマートに再定義される.
 - 統計ソフトに取り入れやすい
 - 分散共分散行列から、LDFやQDFさらにマハラノビスの汎 距離を用いた多群判別. 品質管理のMT理論. ゲノム判別
 - 線形分離可能なデータを認識できない.
 - 合否判定できないことはすぐに確認できる。
- 判別規則の単純さに隠れて多くの問題が隠蔽
 - y_i*f(x)>0 →class1/class2に判別, y_i*f(x)<0 → class1/class2 に誤判別
 - 判別境界上のケースの扱いは未解決.
 - MNM (Minmum Number of Misclassification) 基準による 最適線形判別関数(OLDF)で解消.

発表の概要

- 2010年から2012年まで3年間行っていた「統計入門」の中間と期末試験(10択100間の試験,4個の大問に分類)の総合報告
 - 統計家は、大学の試験のデータを分析し、FDに貢献できる
- 合格得点の3水準(10%,50%,90%点)で合否判定
 - 大問の合否判定を、OLDF,ロジスティック回帰、LDF、 QDF、SVMで行う
 - LDFとQDFは、合否判定できない
 - LDFの誤分類確率は[2.3,16.7], QDFは[0.8,10.8]
 - QDFは、小問の合否判定で合格群すべてが不合格群に誤判別される理由

2. 単純な判別規則と判別分析の問題点

- (1) Fisherの仮説の問題
 - かつてはFisherの仮説を満たさないデータにLDFを適用してはいけないという研究者
 - 多次元正規性の検定はできていない
 - 現実のデータはこの仮説を満たすものは少ない
 - 医学診断で群の平均は典型症例でない
- (2) 判別超平面上のケースの帰属
 - f(x_i)=0のケースをどちらに判別するかは未解決
- (3)標本誤分類確率と母誤分類確率の関係
 - Miyake & Shinmura[18]参照

(5)**MNMの正当性**

- 135個の異なった判別モデルの100重交差検証法
 - LDFは120個,
 - ロジスティック回帰は102個の平均誤分類確率が改定IP-OLDFより悪い[12].
- (6) MNM=0を認識できない問題点
 - 線形分離可能という専門用語が統計理論にない
 - LDFやQDFはMNM=0の空間を認識できない
- (7) 誤分類数と判別係数の95%信頼区間
 - 判別係数は定数項が正と0と負の3つの異なった構造
 - MNMが最少な**最適凸体**の内点を判別係数とすれば、 判別分析の問題が解明
- (8)合否判定できない問題

(4) 3つの判別境界と誤分類数の問題

- 判別境界は3つの異なった決め方
 - 基本は、2群が正規分布N(m₁,s₁)とN(m₂,s₂)と考えて
 対数尤度(log(N(m₁,s₁)/N(m₂,s₂))が0になる判別境界.
- しかし判別境界を動かすと、得られた誤分類数より小さなものが簡単に得られることが多い.
- 事前確率とリスク概念で、正規分布を修正、
 - ケース数(n₁,n₂)に比例させた事前確率で対数尤度を 修正:log(n₁×N(m₁,s₁)/(n₂×N(m₂,s₂))).
 - 医学診断で異常群を正常群に間違う危険性を勘案し、 リスク(r₁,r₂)で修正:
 - $(\log(r_1 \times n_1 \times N(m_1,s_1)/(r_2 \times n_2 \times N(m_2,s_2))).$
 - 正規分布を事前確率で修正したものを基本とすべき

3. 試験の合否判定

- 試験の合否判定は、自明な線形分離可能な判別が可能
 - 50点以上を合格とする場合:y=T1+T2+T3+T4-49.5で y>0であれば合格, y<0であれば不合格
 - しかし、LDFやQDFは合否判定できない
- 誰もがすぐに手に入るMNM=0の良質な研究データ
- 大学の統計研究者は、積極的に試験データの統計分析 を行うことで、FD活動に貢献できる[13].
 - 統計入門で、正規分布表が意外と新入生に難しい
 - 大問で変数選択を行えば、設問の難易度がある程度分かる

3.1 授業の概要

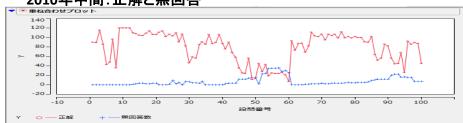
週	2010年(2012年度)	2011年
1	PowerPointで概論	同左
2	最頻値,中央値, 平均値	同左
3	範囲,四分位範囲, SD,CV	同左
4	学生データの解釈	同左
5	正規分布	同左
6	自由度, SE, t分布	相関係数
7	中間試験	中間試験
8	相関係数	9回目
9	Excelで相関の計算	10回目
10	単回帰分析	12回目
11	単回帰分析	期末試験
12	分割表と独立性の検定	
13	分割表と独立性の検定	
14	まとめ	
15	期末試験	

- 統計の入門科目として、基本統計量、相関、単回帰、分割表
- 4件のデータで統計量を説明, Excelで相関と単回帰分析の計算, JMPで実際の出力の解釈
- 2011年は,電力節減のため11週
- 試験は10択100問のマークセンス 試験
- 試験実施後、得点と統計分析した内容を学生にフィードバック

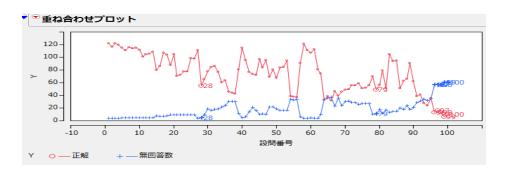
表2 4個の大問

大問	中間試験)	期末試験				
	内容	得点	内容	得点			
T1	基礎統計量	29	統計量の筆算	26			
T2	統計量の筆算	12	相関と回帰	30			
Т3	正規分布	19	分割表	21			
T4	JMPの解釈	40	JMPの解釈	23			

- 100個の小問と4個の大問で, 試験の質の評価を行う.
- 実際の合格最低点は10%点であるが、50%点と90%点で継続分析
- 各水準ごとに変数選択法とMNM=0になる最小設問を 調べることで、設問の難易度が分かる

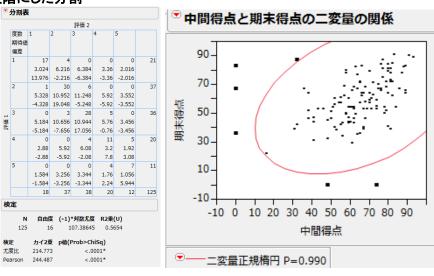

3.2 2012年の欠席者増大の影響の分析

(1)3年間の成績評価

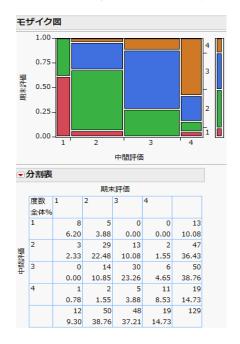

- 2年間の経験を踏まえ、成績の上昇を期待
- 中間試験以降欠席が増える
 - 140人中, 欠席者が40人から60 人に増えつずける
 - 例年は、中間試験後に40人に増 え、減っていく
 - 得点分布が2峰性に?
- 結論
 - 2010年より悪い
 - 相関, 単回帰, 分割表より

			- 	
		2010	2011	2012
	0%	31	25	21
	10%	48	42	37
中	50%	66	61	63
間	90%	82	79	78
	100%	93	88	88
	平均	65. 1	56. 1	58.8
	0%	22	26	20
	10%	40	43	41
期	50%	60	60	58
末	90%	82	81	81
	100%	91	99	95
	平均	59. 3	57. 1	58. 8
	r	0.54	0.7	0. 51
	R2	0. 29	0. 49	0. 26

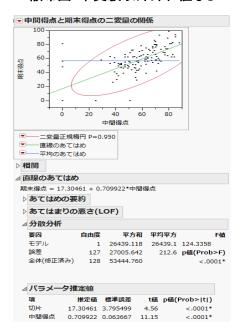
2010年中間:正解と無回答



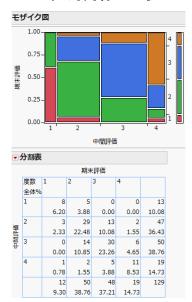
2010年期末:正解と無回答



2010年度のグラフ


評価1(中間+期末=200 点)と 評価2(中間+期末+宿題=230 点)を 5 段階にした分割 中間と期末の散布図 未受験者と、得点変動の激しい学生

2011年の分割表:上位は1ランク落ち

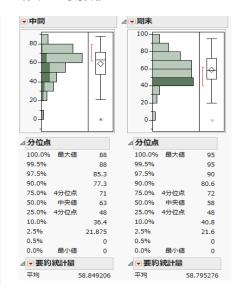


散布図:未受験以外外れ値なし

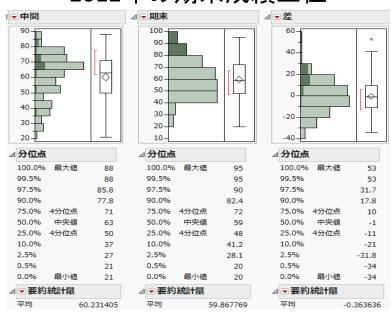
(3)分割表による評価の変動の分析

2011年:対角線上が多い

2012年:上位からの転落

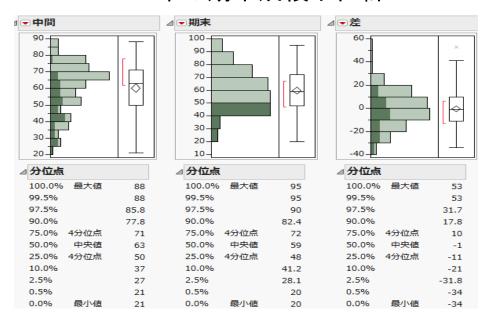


2012年度中間と期末の得点分布


中間の最頻値

期末の最頻値

2012年の期末成績上位



4. 大問と小問による合否判定

- 10択100問の小問を, 4個の大問にまとめる
 - 中間の計算は容易である. 正規分布が難しいことが分かる
 - 期末の計算は難しい
 - 2010年と2011年は分割表が時間不足で未消化
- 研究では, 10%点, 50%点, 90%点で合否判定

大問		中間試験		期末試験					
	内容	得点	小問番号	内容	得点	小問番号			
Т1	基礎統計量	29	1-8, 21-41	計算	26	1-26			
T2	計算	12	9-20	相関と回帰	30	27-56			
Т3	正規分布	19	42-60	分割表	21	57-77			
T4	JMPの解釈	40	61-100	JMPの解釈	23	78-100			

2012年の期末成績下位群

4.1 大問の分析

- 3水準の合否判定で、大問の難易度と合否判定に必要/ 不要がある程度説明可
- 最適線形判別関数とロジスティック回帰が合否判定できる次元で、LDFとQDFは合否判定できない.
- 2012年の10%点のQDF以外、LDFとQDFは合否判定できない。

				10%					50%					90%		
		P	MNM	Logi	LDF	QD	P	MNM	Logi	LDF	QD	P	MNM	Logi	LDF	QD
	2010	4	0	0	9	2	4	0	0	3	6	3	0	0	20	10
中間	2011	3	0	0	9	10	4	0	0	3	3	3	0	0	13	5
	2012	2	0	0	1	1	4	0	0	7	5	4	0	0	10	3
	2010	4	0	0	5	2	4	0	0	4	5	4	0	0	4	13
期末	2011	4	0	0	16	4	<u>4</u>	0	0	4	5	4	0	0	5	12
	2012	4	0	0	9	3	4	0	0	3	3	4	0	0	4	1

中間の大問の分析(上:2010, 中:2011, 下:2012)

10%点:T3の正規分布が難しい,2012年はT4のJMPの解釈だけで合否判定50%点:2010年と2011年はT2の計算は不要,2012年はT3の正規分布は不要

90%点:2010年と2011年はT2の計算とT1の基礎統計量は不要

P	Var	MNM	Logi	LDF	QDF	Var	MNM	Logi	LDF	QDF	Var	MNM	Logi	LDF	QDF
1	T4	6	9	11	11	T4	16	16	16	16	Т3	10	27	24	24
2	T2	2	6	11	9	Т3	9	10	12	12	T4	5	10	20	11
3	T1	1	3	8	5	T1	2	2	5	6	T1	0	0	20	10
4	Т3	0	0	9	2	T2	0	0	3	6	T2	0	0	20	11
1	T2	9	17	15	15	T4	9	9	9	9	Т3	6	7	14	14
2	T4	4	9	11	9	T1	4	4	5	7	T4	1	1	14	6
3	T1	0	0	9	10	Т3	1	2	3	3	T1	0	0	13	5
4	Т3	0	0	9	11	T2	0	0	3	3	T2	0	0	14	9
1	T 4	4	8	6	6	T 4	12	12	14	12	Т 3	8	30	12	12
2	T 2	0	0	1	1	T 1	6	5	9	8	T 1	5	12	9	9
3	T 1	0	0	1	1	T 2	3	4	8	8	T 4	3	3	10	3
4	Т 3	0	0	1	0	Т 3	0	0	7	5	T 2	0	0	10	3

4.2 小問100問の分析

	年度	P	MINM	Logi	LDF	QD	P	MNM	Logi	LDF	QD	P	MNM	Logi	LDF	QD
	2010	6	0	0	2	1	12	0	0	2	4	13	0	1	4	13
		96	0	0	0	109	96	0	0	0	61	96	0	0	0	13
中間	2011	12	0	0	2	107	15	0	0	3	6	9	0	0	6	9
		98	0	0	0	107	98	0	0	0	61	98	0	0	0	9
	2012	6	0	0	7	114	19	0	0	0	3	15	0	0	0	12
		100	0	0	0	114	100	0	0	0	67	100	0	0	0	12
	2010	12	0	0	5	111	12	0	1	4	4	11	0	1	6	13
		99	0	0	0	111	99	0	0	0	62	99	0	0	0	13
期末	2011	8	0	0	4	4	13	0	0	6	7	8	0	0	2	12
		97	0	0	0	110	97	0	0	0	62	97	0	0	0	12
	2012	10	0	0	1	115	10	0	0	5	4	9	0	0	6	12
		97	0	0	0	115	97	0	0	0	63	97	0	0	0	12

期末の大問の分析

10%点:2010年はT3の分割表,2011年と2012年は相関と回帰が不要

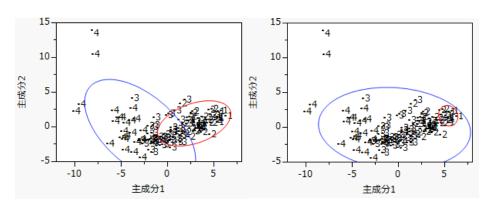
50%点:T3の分割表, T1の計算, T4のJMPが不要

90%点:T1の計算が不要

р	Var.	MNM	Logi	LDF	QDF	Var.	MNM	Logi	LDF	QDF	Var.	MNM	Logi	LDF	QDF
1	T1	10	27	13	13	T2	17	17	19	19	Т3	10	19	10	14
2	T2	5	7	8	10	T4	12	13	13	15	T2	3	9	6	6
3	T4	4	8	6	6	T1	5	6	8	9	T4	2	4	4	4
4	Т3	0	0	5	2	Т3	0	0	4	5	T1	0	0	4	13
1	T1	8	28	22	22	T2	17	17	17	17	T4	6	22	6	6
2	T4	4	7	7	12	Т3	11	12	16	12	T2	3	5	5	7
3	<u>T3</u>	2	5	15	8	T4	4	5	9	8	<u>T3</u>	1	1	5	3
4	T2	0	0	16	4	<u>T1</u>	0	0	4	5	T1	0	0	5	12
1	T1	6	13	8	10	T2	19	19	19	19	T2	7	20	8	7
2	T4	3	10	7	7	Т3	9	10	15	15	Т3	4	6	7	6
3	ТЗ	2	7	9	6	T1	3	4	10	10	T4	2	6	3	4
4	T2	0	0	9	3	T4	0	0	3	3	T1	0	0	4	1

4.3 変数選択

変数選択法は、線形分離可能なデータで問題がある。 10点:24個中19個がより大きい次元を選ぶ 50%点:24個中17個がより大きい次元を選ぶ 90%点:24個中12個がより大きい次元を選ぶ


			10%					50%					90%		
	F	Сp	AIC	BIC	MNM	F	Ср	AIC	BIC	MNM	F	Ср	AIC	BIC	MNM
2010 中間	<u>30</u>	4	<u>22</u>	<u>11</u>	6	<u>52</u>	<u>25</u>	<u>25</u>	8	12	<u>28</u>	5	<u>15</u>	8	13
2010 期末	<u>48</u>	<u>29</u>	<u>26</u>	<u>17</u>	12	<u>28</u>	5	<u>19</u>	<u>14</u>	12	<u>22</u>	5	<u>15</u>	8	11
2011 中間	<u>42</u>	10	<u>19</u>	10	12	<u>32</u>	4	<u>21</u>	10	15	<u>19</u>	2	<u>13</u>	5	9
2011 期末	<u>38</u>	8	<u>23</u>	<u>14</u>	8	<u>48</u>	<u>21</u>	<u>28</u>	<u>15</u>	13	<u>22</u>	1	<u>15</u>	7	8
2012 中間	<u>43</u>	<u>25</u>	<u>30</u>	<u>15</u>	6	<u>40</u>	14	<u>22</u>	15	19	<u>46</u>	9	<u>15</u>	8	15
2012 期末	<u>64</u>	<u>11</u>	<u>20</u>	8	9	<u>35</u>	7	<u>22</u>	<u>13</u>	10	<u>45</u>	2	<u>12</u>	8	9

4.4 QDFが合格群を不合格と誤判別する現象

- 小問100問を主成分分析し、 第1主成分と第2主成分で、 スコアプロットを描く。
- 90%点, 50%点, 10%点で学生を第1群から第4群に分ける.
- なぜ第4群の成績の悪い学 生の分散が大きいのか?
- なぜ,90%点の合格群が 10%点の不合格群に誤判 別されるのか?

90%点の合否判定

4.5 **QDFが合格群の全てを誤判別す** る理由と判別理論の修正

• LDFやQDFは、計算 式中に分散共分散 行列の逆行列を含 む

10-

-10

主成分2

- QDFと正則化法: 分散共分散行列の 対角要素を修正す ることで, ダーティー な判別に対応
- 単に一定値をとる変数にN(0,10⁻⁶)を加えれば良い。

,,,,	- Hilli		
	LDF	QDF	平均の差 の検定
2群の値が 同じ	省く	省く	省く
2群が別の 一定値(判 <mark>別に重要</mark>)	省く	省く	省く
一方が同じ で,他方が ばらつく(判 別に重要)	計算	合格群を不合格群に誤判別	計算
SPSS	省く	省〈	省く

p	VAR	MNM	pLDF	pQDF	修正	VAR	MNM	pLDF	pQDF
1	x85	10	14	14	14	x92	12	12	12
2	x15	6	14	114	28	x42	8	8	12
3	x68	5	8	114	28	x21	5	5	12
4	x47	3	8	114	28	x54	4	8	12
5	x 7	1	4	114	9	x65	1	3	12
6	x32	0	5	114	3	x100	1	3	12
7	x20	0	3	114	0	x83	1	3	12
14	x98		3	114		x1	1	1	12
15	х5		1	114		x62	0	1	12
16	x1		0	114		х3		1	12
18	x38			114		x60		0	12
19	х6			114		x96			12
20	x89			114		x22			12

- 2013年の中間の10%と90%
- 一定値をとる設問 にN(0,10⁻⁹) を加え るだけで解決
- しかし、分散共分 散行列の(対角要素)の修正という研究スタイルを変えず
- データがばらつかない、ことを認めるべき
- 90%点は、 X92(t=16.0,12/34), X65(t=12.2,12/48), X83(t=7.85,12/72)

5. 終わりに

- 判別分析に関する多くの問題は、最適線形判別 関数で全て解決[12].
- 試験の合否判定データ
 - 良質なMNM=0の研究データ
 - 大問による合否判定で、MNM=0になる設問と不要な設問で、試験の質や学生の理解度が分析。
 - 統計入門のような入門科目の簡単な設問の場合, 100問中6問ぐらいで合否判定可.
 - 入試データの統計分析をなぜ行わないのか?
- 大学教育に、統計家は積極的にかかわろう。

文献

- [1] Fisher, R.A. (1936). The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, 7, 179–188.
- [2] Firth, D. (1936). Bias reduction of maximum likelihood estimates. Biometrika, 80,27-38.
- [3]Flury, B. & Rieduyl, H. (1988). Multi-variate Statistics: A Practical Approach, Cambridge University Press, Cambridge.
- [4] Shimmura,S.(2000). A new algorithm of the linear discriminant function using integer programming, New Trends in Probability and Statistics, **5**,133-142.
- [5] Shinmura,S. (2011). Beyond Fisher's Linear Discriminant Analysis New World of Discriminant Analysis -, ISI2011 Proceedings, 1-6.
- [6]新村秀一, 三宅章彦(1983). 重回帰分析と判別解析のモデル決定(1)-19変数をもつCPDデータの多重共線性の解消-, 医療情報学, 3/3,507-124.
- [7]新村秀一(1998). 数理計画法を用いた最適線形判別関数,計算機統計学,11/2,89-101.
- [8]新村秀一(2004). JMP活用 統計学とっておき勉強法. 講談社,東京.
- [9]新村秀一(2007). JMPによる統計レポート作成法. 丸善.
- [10]新村秀一(2007). 数理計画法による判別分析の10年,計算機統計学,20(1/2) 53-94.
- [11] 新村秀一(2007). ExcelとLINGOで学ぶ数理計画法. 丸善.
- [12] 新村秀一(2010). 最適線形判別関数. 日科技連出版社.
- [13]新村秀一(2011). 問題解決学としての統計入門, 第7回統計教育の方法論ワークショップ-問題解決力育成を目指した統計教育の方法論-, 1-10.
- [14] 新村秀一(2011). 合否判定データにおける判別分析の問題点. 応用統計学, 3, 157-173
- [15]新村秀一(2011). 数理計画法による問題解決法. 日科技連出版社.
- [16] 新村秀一(2012).Fisherの判別分析を超えて. 2012年SASユーザー会論文集, 349-361.
- [17] 新村秀一(1984). 医療データ解析, モデル主義, そしてOR. オペレーションズ・リサーチ, 29-7, 415-421.
- [18] Miyake, A. & Shinmura, S. (1976). Error rate of linear discriminant function, F.T. de Dombal & F.Gremy, editors 435-445, North- Holland Publishing Cmpany.
- [19]田口玄一(1999). タグチメソッドわが発想法. 経済界. 東京.
- [20] Vapnik, V. (1995). The Nature of Statistical Learning Theor. Springer- Verlag, 1995.
- [21]新村秀一, ユンイエブン(2007). OLDFとSVMの比較研究(4)—種々のデータによるSVMとの比較-, 成蹊大学経済学部 論集, 37-2, 89-119.
- [22]新村秀一・鈴木隆一郎・中西克己(1983). 各種判別手法を用いた医療データ解析の標準化 マンモグラフィによる乳癌の診断 —. 医療情報学, 3-2, 38-50.