統計リテラシー教育の世界的潮流と評価

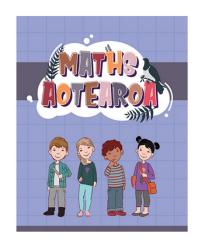
深澤弘美(東京医療保健大学) 及川久遠(大和大学)

今日の内容

- ■統計リテラシー教育の世界的潮流
 - ●ニュージーランドの小学校の教科書(昨年秋)
 - ●西村他(2022)「算数・数学の教科書の世界的潮流に 関する調査研究」、教科書研究センターHP
 - フィンランド,アメリカ,イギリス,ドイツ, ニュージーランド,日本の算数数学の教科書
- ■統計リテラシーの評価

2022-ISMCRP-4203:統計基礎リテラシー評価における コンピュータ適応型テストに関する研究

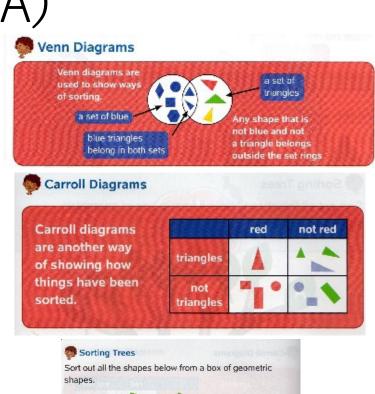
ニュージーランドの初等教育の教科書

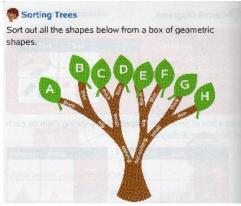

Maths Aotearoa:アオテアロア(NZ)の数学

- 国定カリキュラムに準拠
- 科目名「数学と統計」の教科書

資料: NZ教育省(2015)

番号	レベル	NZ の学年	日本の学年					
1A	レベル 1	Y1-2	幼稚園					
1B		11-2	小学校1年生					
2A	レベル 2	Y3	小学校2年生					
2B		Y4	小学校3年生					
3A	3 8 3 2	Y5	小学校4年生					
3B	レベル3	Y6	小学校5年生					
4A	1.001.1	Y7	小学校6年生					
4B	│ レベル4 │	Y8	中学1年生					




小学校低学年の教科書 (2A)

- 日本の小学校2年生に対応する教科書
- 国定カリキュラムレベル2に準拠

第29章「データの収集と表示」 第30章「データの分類」

- ベン図
- クロス表
- 樹形図 を使って図形を種類 ごとに分類する方法を学習する

小学校中学年の教科書:3年生 (2B)

第29章「データの並べ替え」

学習目標

- 表にデータを整理して並べ替える
- ICTツールを用いて表を作成する
- データを意思決定や問題解決に活用する

演習:紙またはコンピュータ(WORD,EXCEL) を使ってデータを整理する

14名の生徒の年齢、誕生月、目の色などのデータを入力

- ・11月生まれは女子と男子どちらが多いですか?
- ・1番年の小さい男子は12月生まれですか?

Compare your table with someone else. Are they exactly the same or could they be slightly different?

Look at the following table:

Name	Girl or Boy	Age	Birth Month	Eye Colour		
Emily	Girl	16	December	Blue		
Kristina	Girl	12	November	Brown		
Jonathon	Boy	14	November	Blue		
William	Boy	11	April	Blue		
Rachel	Girl	15	October	Blue		
Emma	Girl	13	May	Brown		
Arwen	Girl	11	March	Brown		
Bethan	Girl	6	March	Brown		
Megan	Girl	11	February	Blue		
Julie	Girl	9	February	Blue		
Sarah	Girl	8	November	Blue		
Nathan	Boy	8	November	Blue		
Joshua	Boy	10	January	Brown		
Ben	Boy	7	December	Brown		

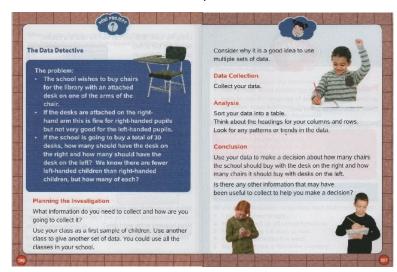
Read each sentence and use the table to say whether the statement is true or false.

- 1 William has blue eyes.
- 2 If you are born in March you have brown eyes.
- 3 There are more boys born in November than girls.
- 4 The oldest person is a girl with blue eyes.
- 5 The youngest person is a boy with brown eyes.
- 6 William was born in April.
- 7 The youngest boy was born in December.
- 8 All eight-year-olds were born in November.

Other ways of sorting help you to see information even more clearly.

小学校中学年の教科書:3年生(2B)

第29章「データの並べ替え」の探求課題


■問題

学校では図書館用の**机付きの椅子の購入を検討**しています。右側に机がついている椅子は右利 きの人には使いやすいですが、左利きの人には少し不便です。もし学校が合計30客の椅子を 購入するとしたら,**右側に机のついている椅子と左側に机がついている椅子,それぞれ何脚ず つ購入すべきでしょうか**。左利きの人の方が少ないことはわかっていますが、実際には何人な

のでしょう。

■調査の計画

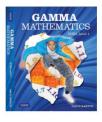
- •収集すべき情報は何でしょうか。そしてそれをどのように 集めますか?
- あなたのクラスをはじめのサンプルとして使いしましょう。
- •他のクラスは別のデータセットになるでしょう
- •学校すべてのクラスの情報を活用できるでしょう
- •複数組のデータを使うことがなぜ良いのか考えましょう

小3探求課題(「データの並べ替え」p.196)

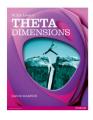
小学校中学年の教科書:4年生(3A)

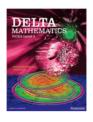
第30章「データの収集と表示」

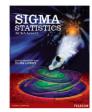
- PPDACのサイクルのData
- 集めたデータをドットプロット、幹葉図を用いて視覚化する
- 多変量のデータを種類ごとに並べ替える
 - カードを使う
 - 性別, 誕生月, 身長, 好きな色の4項目を記載
 - 並べ替えを行い、問に答える
 - ①6月に生まれた男子生徒は何人ですか
 - ②最も身長の高い生徒は男子生徒ですか女子生徒ですか
 - ③黄色が好きな女子生徒は何人ですか
 - ④ 身長が1番小さい女子生徒が生まれた月は何月ですか
 - ⑤1番身長の高い男子の好きな色は何でしょう
 - ⑥ 赤が好きな6月生まれの人は何人ですか
 - ⑦5月に生まれた男子生徒のうちブルーが好きではない人は何人ですか



中等教育の教科書:David Barttonシリーズ







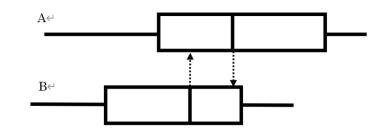
	教科書	昔のタイトル	カリキュラム	NZの 学年	日本の学年	備考
		Alpha	レベル4・5	Y9	中学2年生	684 ページ(66)
•		Beta	レベル 5	Y10	中学3年生	750 ページ(107)
		Mathematics				応用・統計少
	Gamma		レベル5・6	Y11	 高校 1 年生	基礎・統計多
		Fundamentals	NCEA Level1		同仪 1 平主	440 ページ
						(115)
	Theta	Mathematics	レベル 7	Y12	高校2年生	微積重視
	Tileta	Dimensions	NCEA Level2	112	同仅七千王	統計重視
	Delta Mathematics		レベル 8	Y13	高校3年生	微積
	Sigma Statistics		NCEA Level3	113	同仪 3 半生	統計

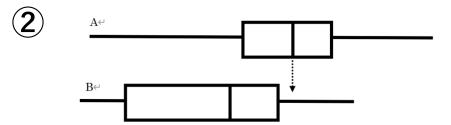
必修はlevel6まで カッコ内は統計の ページ数

理系

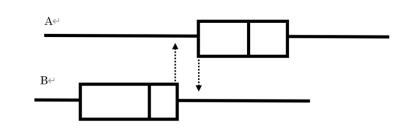
文系

理系 建系 理系


インフォーマルな推論 ニュージーランド

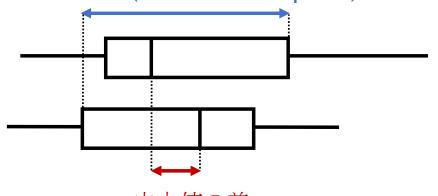

学年	内容
中学 2 年生(alpha)	経験的確率からの予測
中学 3 年生(beta)	箱ひげ図の中央値の位置から推測
高校 1 年生(gamma)	箱の範囲に対する中央値の差から推測
高校 2 年生(theta)	インフォーマルな信頼区間を用いた推測 標本の中央値±1.5× 四分位範囲 標本の大きさ
高校 3 年生(sigma)	ブートストラップ法による再標本を用いた推論 フォーマルな信頼区間を用いた推論

箱ひげ図で推測


- ① 中央値が他方の箱の中に納まる場合 →Aの方がBより大きいとは判断できない
- ② 中央値が他方の箱の外に位置する場合→Aの方がBより大きい傾向がある
- ③ 箱が重ならない場合 →Aの方がBより大きい傾向がある

※外れ値の影響を排除するために、箱の内側のみに着目

3

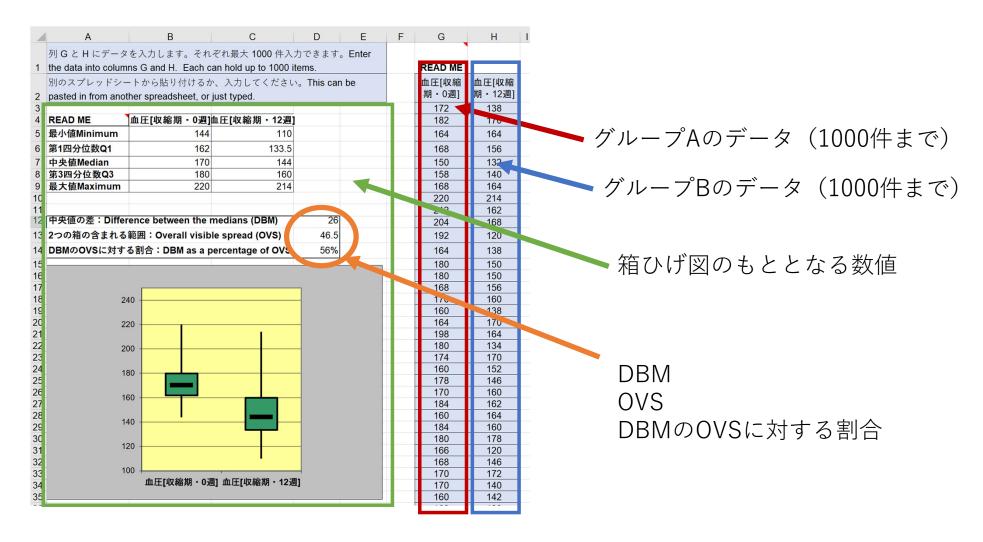

箱ひげ図を用いたインフォーマルな推測

母集団に対して「一方は他方より大きい」と主張するために、箱ひげ図を 比較する

「中央値の差」と「2つの箱の含まれる範囲」に着目する

2つの箱の含まれる範囲

OVS (Overall Visible Spread)

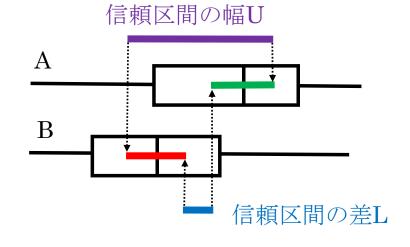


標本の	母集団に対して
大きさ	「一方は他方より大きいまたはその逆傾向がある」
30	DBM>1/3OVS か DBM の OVS に対する割合>33%
100	DBM>1/5OVS か DBM の OVS に対する割合>20%
1000	DBM>1/10OVS か DBM の OVS に対する割合>10%

中央値の差

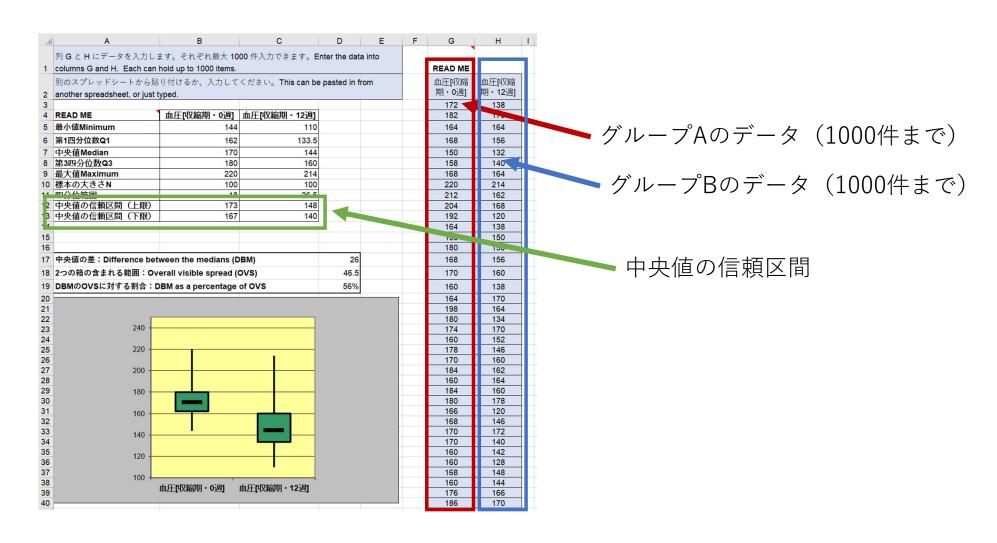
DBM (Distance Between the Medians)

Excelで箱ひげ図の比較



箱ひげ図(5数要約)と信頼区間

【母集団の中央値に関するインフォーマルな信頼区間】


※母集団の中央値の90%の信頼区間のおおよその値で推測を行う

【インフォーマルな信頼区間を用いた推論】

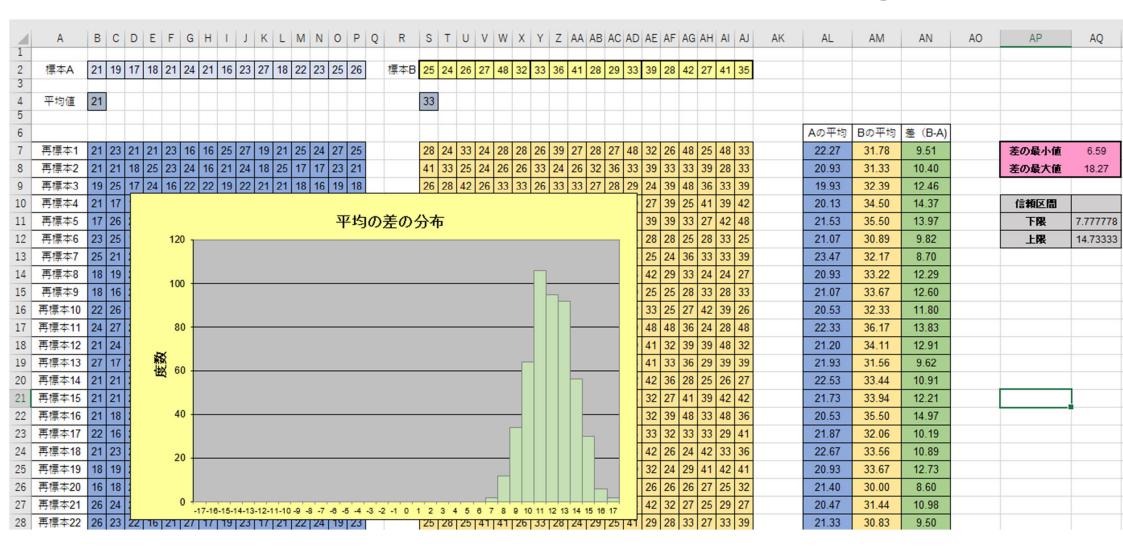
信頼区間の差L(青の範囲)が 差L>0 ならば母集団Aの中央値はBより大 きいと判断できる

Excelで中央値の信頼区間

ブートストラップ法を用いた推論(1)

標本	169	170	177	170	185	165	171	132	181	188	150	185	171
157.4	167	180	150	183	180	191	165	196	187	172	172	175	

←標本の大きさ:25


←再標本:1000

 \forall

- ① 標本データから 1000 回再標本を抽出する↩
- ② 抽出した再標本すべてにつき中央値を計算する↩
- ③ 信頼区間の上限を計算する(1000 個の中央値のうち上位 26 番目(2.5%)の ←**上から26番目** 値)↓ (2.5%)
 - =SMALL(\$R\$6:\$R\$1005,26)←
- ④ 信頼区間の下限を計算する(1000 個の中央値のうち下位 26 番目(2.5%)の ←**下から26番目** 値)← (2.5%)
- =LARGE(\$R\$6:\$R\$1005,26)←

4	A	В	C	D	Ε	F	G	Н	-1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V
1	Census@School	Arms	an(高核	1年生)																		
2	標本	169	170	177	170	185	165	171	132	181	188	150	185	171	167	180	150	183	180	191	165	196
3	中央値	172																				
4	標本の大きさ	25																				
5															再標本:	10000		中央値		中央値の	範囲	
6	再標本1	170	171	132	165	181	180	170	177	167	169	185	172	132	171	175		171		165	~	187
7	再標本2	185	185	172	181	181	150	171	187	172	171	196	171	181	170	172		172				
8	再標本3	171	165	180	175	132	171	196	180	170	132	165	175	150	180	150		171		中央値の	95%信頼	区間
9	再標本4	169	132	180	171	180	185	180	191	185	132	170	185	187	150	191		180		169	~	183
10	再種本5	183	167	172	172	171	172	187	170	185	191	183	165	188	196	167		172				

ブートストラップ法を用いた推論②

算数数学の教科書における統計教育の共通点

- ■高校生向け教科書は**文系用・理系用**の2種類が発行されている国が多く,文系用は統計の扱いが多い
- ■話し合いや議論を即す問題や**探求課題**が豊富に掲載されている

ドイツ:中学で基礎的な学習は終了,高校は探求学習のみ

■現実事象と関連付けした**統計的確率**を多く扱っている

フィンランド:「糖尿病の遺伝」「香水を瓶に充填する機械」など

アメリカ:「危険な行動をとることで起こりうるリスクの計算」

「治療の有効性の評価」,医療(病気・肥満・食料摂取)

金融・地図・政治・民族

ドイツ:「数学と環境」など

統計リテラシーの評価

- •ペーパー試験,口頭試問による内部評価
- 統計検定など外部評価
- ICTツールの操作スキルやデータの基礎的な操作(たとえば、 並べ替えなど)の評価

統計的問題解決評価 (深澤・和泉・櫻井 (2017)
→知識・技能の評価

問題(Problem) 計画(Plan)

データ(Data)

グループ評価 (自己評価・相互評価)

- 収集
- ・クリーニング

分析(Analysis)

- 統計指標
- 統計グラフ
- ・ 2変量の関係(当該学年までに学習すべき内容)

結論(Conclusion)

プレゼンテーション

統合的達成度

口頭試問等による個人評価

統計的問題解決評価項目

統計リテラシーの評価

- 統計リテラシーの達成度 (知識・技能)
- 到達度レベルにあった評価
 - 項目反応理論
 - 問題データベースの構築
 - 評価ルーブリックの作成

例:「箱ひげ図の理解と利用」

箱ひげ図の理解と利用に関する評価

評価	箱ひげ図の理解と利用
1	箱とひげの意味を理解し、5数との対応、四分位
1	ごとの割合を正しく読み取ることができる
2	時系列に並ぶ箱ひげ図や、性別ごとの箱ひげ図
۷	を正しく比較できる
3	複数の箱ひげ図から全体を考察し正しく分布を
3	読み取ることができる
4	度数分布表,ヒストグラムとの対応を理解し,
4	正しく分布を読み取れる
	ひげや箱の間に位置する値についても正しく理
5	解し,箱ひげ図を正しく読み取り問題解決に活
	かすことができる

まとめ

- ■ニュージーランドの教科書
 - 初等教育の初期の段階からコンピュータやカードを用いてデータの操作を行う授業が充実
 - 中等教育では、インフォーマルな推測(箱ひげ図、中央値)
- ■諸外国の教科書における統計の内容
 - 文系理系用教科書,探求課題,現実事象と関連した経験的確率
- ■統計リテラシーの評価
 - 問題データベースの構築
 - 評価ルーブリックの作成

参考文献

- 西村他(2022),算数・数学の教科書の世界的潮流に関する調査研究 (https://textbook-rc.or.jp/wpcontent/uploads/2022/10/80160bf7b38e4d1fd6ab6aa113f8bd3e.pdf).
- 深澤・和泉・櫻井(2017),統計教育における評価指標の作成と試行一高校,大学の教養レベル一,第 13 回統計教育の方法論ワークショップ-学習指導要領の次期改訂に向けた統計教育の新展開-,東京.
- NZ教育省(2015),The New Zealand Curriculum, Year and Curriculum Levels, http://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum

謝辞

・本研究は、統計数理研究所・共同研究利用・重点型研究 (2022-ISMCRP-4203:統計基礎リテラシー評価におけるコン ピュータ適応型テストに関する研究の助成を受けた。統計数理 研究所の船渡川氏より貴重なコメントを頂いた。ここに記して 感謝の意を表したい。