特異値分解から見た項目反応理論の新評価 — 大学数学のCBTによるテスト —

廣瀬英雄

久留米大学客員教授
中央大学研究開発機構教授

2023年3月13日

多数の問題と多数の受験者の正答誤答表から，
問題の難しさのレベルと受験者の能力のレベルの両方を同時に推定できる。

項目反応理論
Item Response Theory
IRT

推定値の信頼度も高い

本日のテーマ

汎用性の高い評価法IRTそのものをどう評価するか

応答マトリクスから評価する

項目反応理論（IRT）の数理モデル

ロジスティック確率分布 $\quad P_{j}\left(\theta_{i}\right)=\frac{1}{1+\exp \left\{-1.7 a_{j}\left(\theta_{i}-b_{j}\right)\right\}}$未知パラメータ 未知バラメータ

観測応答マトリクス

Δ
IRTパラメータ

観測応答マトリクス

IRT推定応答マトリクス

IRTの応答マトリクス再構築能力を評価したい

$$
\begin{aligned}
\operatorname{RMSE}(A, B) & =\sqrt{\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i j}-b_{i j}\right)^{2}} \\
& =\sqrt{\frac{1}{n m}\left(\|A-B\|_{F}\right)^{2}} .
\end{aligned}
$$

IRTから再構成されたマトリクスと観測マトリクスとの差のノルムを求める

他の方法により再構成されたマトリクスの
観測マトリクスとの誤差を求める

$$
\begin{aligned}
\operatorname{RMSE}(A, B) & =\sqrt{\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i j}-b_{i j}\right)^{2}} \\
& =\sqrt{\frac{1}{n m}\left(\|A-B\|_{F}\right)^{2}} .
\end{aligned}
$$

IRTから再構成されたマトリクスの

観測マトリクスとの誤差を求める

特異値分解（SVD）から再構成された低近似マトリクスの
観測マトリクスとの誤差を求める

IRTと同程度の近似ができるランク k を求める
k（分解の複雑度）

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 1} & \cdots & a_{m n}
\end{array}\right)=\left(a_{i j}\right) \text { SVD } \\
& \boldsymbol{u}_{l}=\left(\begin{array}{c}
u_{l 1} \\
u_{l 2} \\
\vdots \\
u_{l m}
\end{array}\right) \quad \sigma_{l} \boldsymbol{u}_{l} \boldsymbol{v}_{l}^{\top} \\
& \boldsymbol{v}_{l}=\left(\begin{array}{c}
v_{l 1} \\
v_{l 2} \\
\vdots \\
v_{l n}
\end{array}\right) \\
& A_{k}=\sum_{l=1}^{k} \sigma_{l} \boldsymbol{u}_{l} \boldsymbol{v}_{l}^{\top}
\end{aligned}
$$

観測応答マトリクス

SVD低ランク近似マトリクス
Δ_{k}

低ランク近似マトリクスのランク数によるRMSEの違い

ランク数	SVD	IRT
k	$\operatorname{RMSE}\left(\Delta \Delta_{k}, \Delta\right)$	$\operatorname{RMSE}(\hat{\Delta}, \Delta)$
		0.3915
1	0.4066	IRTの近似精度は
2	0.3851	ランク $=2$ 以下の
3	0.3652	SVDの近似マトリクスの精度以下
4	0.3479	
5	0.3306	
10	0.2562	
20	0.1325	
31	0	

項目反応理論から

応答マトリクスを再現すると

$k<2$ 程度の低ランクマトリクス近似の精度しか得られない

case A

42ケースのデータでも調べる

id	subject	n	m	id	subject	n	m	id	subject	n	m
1	PS	44	14	15	C	45	42	29	C	1131	77
2	PS	41	19	16	LA	36	39	30	LA	1101	84
3	PS	34	17	17	LA	566	6	31	C	215	36
4	P	97	32	18	C	66	33	32	LA	47	39
5	S	57	15	19	S	97	12	33	C	209	36
6	S	75	14	20	C	76	30	34	C	868	6
7	C	40	19	21	LA	132	49	35	C	215	36
8	PS	44	15	22	LA	132	84	36	LA	585	84
9	PS	72	21	23	LA	177	49	37	LA	39	39
10	ODE	41	13	24	LA	142	45	38	C	209	31
11	ODE	49	25	25	LA	46	39	39	C	209	67
12	PS	54	21	26	LA	39	45	40	C	216	31
13	C	70	26	27	LA	181	45	41	LA	585	49
14	C	9	16	28	LA	229	84	42	C	145	34

PS：確率•統計，P：確率論，S：統計学，
ODE：常微分方程式，C：微積分，LA：線形代数

項目反応理論から

応答マトリクスを再現すると
$k<2$ 程度の低ランクマトリクス近似の精度しか得られない

42ケースすべてに対して成立している

項目反応理論から

応答マトリクスを再現すると
$k<2$ 程度の低ランクマトリクス近似の精度しか得られない

それはトレーニングデータでの結果であって テストデータでもそういえるだろうか

予測誤差を調べるため

training data で予測モデルを作り

test data で予測誤差を調べてみる

項目反応理論から

応答マトリクスを再現すると
$k<2$ 程度の低ランクマトリクス近似の精度しか得られない

テストデータでもそうだった

ただし，case Aのとき

42ケースから8ケースを選んで調べる

case $i d$	$\mu\left(\operatorname{RMSE}\left(\tilde{T}_{k_{-} \mathrm{opt}}^{\mathrm{SVD}}, T\right)\right)$	$k _o p t$	$\mu(\operatorname{RMSE}(\tilde{T}, T))$	case name
5	0.2935	1	0.2908	
10	0.3547	1	0.3591	最適なkのときの
15	0.3457	1	0.3344	．．．．．：低ランク
8ケース ${ }^{20}$	0.3801	1	0.3726	
8フ 25	0.3701	5	0.3789°	
30	0.3442	16	0.3771	case B
35	0.3982	2	$\therefore 0.3964$	
40	0.4053	3	0.4068	case A

case $i d$	$\mu\left(\operatorname{RMSE}\left(\tilde{T}_{k_{-} \text {SD } t}^{\text {SVD }}, T\right)\right)$	k_{-}opt	$\mu(\operatorname{RMSE}(\tilde{T}, T))$	case name
5	0.2935	1	0.2908	
10	0.3547	1	0.3591	
15	0.3457	1	0.3344	
20	0.3801	変わらない		
8ケース	0.3701	5	0.3726	
25	0.3442	16	0.3789	
35	0.3982	2	0.3964	case B
40	0.4053	3	0.4068	case A

本日のテーマ

汎用性の高い評価法IRTそのものをどう評価するか

応答マトリクスから評価すると

IRTの推定能力は

応答マトリクスサイズが中規模以下（ $n=100, m=50$ ）なら， IRTの推定応答マトリクスの再現能力は特異値分解のそれと同程度（マトリクスのランクはどちらもかなり小さい）

IRTによる推定能力は推定の限界近くまで達している

応答マトリクスサイズが大規模（ $n=1000, m=100$ ）なら， IRTの推定応答マトリクスの再現能力は特異値分解のそれより悪い（マトリクス分解のマトリクスのランクが大きくなる）

IRTの推定能力はかなり高いが
IRT以外の推定方法を確立できる余地は残されている

第20回統計教育の方法論ワークショップ

特異值分解から見た項目反応理論の新評価 — 大学数学のCBTによるテスト—

thank you

廣瀬英雄

久留米大学客員教授
中央大学研究開発機構教授

