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項目反応理論 
Item Response Theory

推定値の信頼度も高い

IRT

多数の問題と多数の受験者の正答誤答表から、 
問題の難しさのレベルと受験者の能力のレベルの 

両方を同時に推定できる。



汎用性の高い評価法IRTそのものをどう評価するか

本日のテーマ

応答マトリクスから評価する

3

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

問
題
1

問
題
2

問
題
3

問
題 
31

学生1
学生2
学生3

学生216

学生1

学生28

学生28

大学定期試験（微積分）

CBT試験

問
題
1

問
題 
31

正解

不正解

観測応答マトリクス

4

2 H. Hirose

Xi,Yi ∼ B(n, p) (1)

(Xi,Yi) (2)

p = 0.1,0.2, · · · ,0.9 (3)

i = 1,2, · · · ,100 (4)

n = 100 (5)

p = 0.75,npq = 300/16,1.965∗√npq =,1.965∗
√
(300)/4 (6)

Xi,Yi ≈ [66.5,83.5]≈ [75−8.5,75+8.5] (7)

Y ≈ [66.5,83.5]≈ [75−8.5,75+8.5] (8)

δi j ∆ δ (9)

case A



項目特性曲線
困難度

識別度

受験者能力（習熟度）

正
答
確
率

推定

推定

入力データ
最尤推定法

ロジスティック確率分布

項目反応理論（IRT）の数理モデル

未知パラメータ 未知パラメータ 5

正
解

不
正
解

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

問題id

受
験
者
id

観測応答マトリクス

2 H. Hirose

Xi,Yi ∼ B(n, p) (1)

(Xi,Yi) (2)

p = 0.1,0.2, · · · ,0.9 (3)

i = 1,2, · · · ,100 (4)

n = 100 (5)

p = 0.75,npq = 300/16,1.965∗√npq =,1.965∗
√
(300)/4 (6)

Xi,Yi ≈ [66.5,83.5]≈ [75−8.5,75+8.5] (7)

Y ≈ [66.5,83.5]≈ [75−8.5,75+8.5] (8)

δi j ∆ δ (9)

!3#

!2#

!1#

0#

1#

2#

3#

4#

0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#11#12#13#14#15#16#17#18#19#20#21#22#23#24#25#26#27#28#29#30#

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

問
題
1

問
題
2

問
題
3

問
題 
31

学生1
学生2
学生3

学生28

!2.5%

!2%

!1.5%

!1%

!0.5%

0%

0.5%

1%

1.5%

2%

2.5%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%11%12%13%14%15%16%17%18%19%20%21%22%23%24%25%26%27%28%29%30%31%

学
生
1

学
生
2

学
生
3

学
生 
28

問
題
1

問
題
2

問
題
3

問
題 
31

観測データ

受
験
者
能
力
（
習
熟
度
）

問
題
困
難
度

問題id

受験者id

推定値

95% 
信頼区間

推定値

受験者能力 θ（習熟度）の推定値

問題困難度 b の推定値

IRTによる推定

推定 model
parameter

6

観測応答マトリクス

case A

2 H. Hirose

Xi,Yi ∼ B(n, p) (1)

(Xi,Yi) (2)

p = 0.1,0.2, · · · ,0.9 (3)

i = 1,2, · · · ,100 (4)

n = 100 (5)

p = 0.75,npq = 300/16,1.965∗√npq =,1.965∗
√
(300)/4 (6)

Xi,Yi ≈ [66.5,83.5]≈ [75−8.5,75+8.5] (7)

Y ≈ [66.5,83.5]≈ [75−8.5,75+8.5] (8)

δi j ∆ δ (9)



real world

estimation�

model

δij� ^ 

IRT�

7

観測応答マトリクス
IRTパラメータ

ใॲཧֶձڀݚใࠂ
IPSJ SIG Technical Report

perspective; we look at the item response matrix itself di-

rectly from the matrix decomposition perspective. The

typical data cases corresponding to this new look appear

in the examination data in education.

Using the estimates for parameters in IRT, the item

response matrix can be reconstructed; we call this the

estimated item response matrix. Then, the difference be-

tween the observed and estimated item response matrices

can be computed using an appropriate matrix norm such

as the Frobenius matrix norm. Thus, it is possible to mea-

sure how close the observed item response matrix is to the

estimated item response matrix. This is the criterion to

measure the difference between two matrices.

Many researchers have proposed new methods to

achieve superiority over the standard IRT performance.

For example, multidimensional item response theory

(MIRT) (see [15]) and knowledge tracing (KT) (see

[13], [24]) have been proposed to find examinee proficiency

using parametric models. [25] describe the results of a

performance comparison among those parametric mod-

els. In the evaluation of parametric models, the log-

likelihood values are primarily used. In a nonparametric

approach, [21] show how to predict student performance

using a recommender system. In addition, [20] use a rec-

ommender system to predict student performance. Since

recommender systems often use a matrix factorization al-

gorithm, the RMSE is used to evaluate the closeness of

the two matrices. More complex cases have also been pro-

posed, with [11] integrating KT and IRT, and [26] com-

paring deep learning approaches to simple IRT.

However, unlike papers that provide such new math-

ematical models, this paper intends to examine the ef-

fectiveness of IRT itself from a different perspective as

slightly mentioned above using actual educational data

cases. To accomplish this, we use matrix decomposi-

tion (MD) perspective. [7] introduced matrix completion

(MC) and low-rank singular value decomposition (SVD)

to evaluate the difference between two matrices. By us-

ing SVD, we can obtain a low-rank matrix that is close to

the original matrix in the sense of Frobenius matrix norm.

The second challenge of this paper is to apply the method

to a number of actual examination data cases performed

at universities. By applying the matrix decomposition and

singular value decomposition methods to more than 40 ex-

amination data cases, ranging from small to large matrix

sizes, we were able to derive a very clear conclusion about

the effective approximated low-rank matrix that is equiv-

alent to the estimated item response matrix. Therefore,

the objective of the paper is to clarify the position of the

IRT performance in the sense of low-rank approximation

matrix equivalent to the estimated item response matrix

using a number of actual examination data sets.

2. Item response theory

2.1 Mathematical model

The standard IRT estimates proficiency parameters θi

(i = 1, . . . , n) and problem parameters aj , bj , cj (j =

1, . . . ,m) simultaneously by using the observed item re-

sponse matrix. Usually, this item response matrix (ma-

trix size is n×m) consists of 1/0 valued elements δij , with

the value 1 for the (i, j) element corresponding to the case

where examinee i solved question j correctly and the value

0 for the case where he/she solved it incorrectly.

Assume that the logistic probability function pij of ex-

aminee i correctly answering question j is expressed such

that

pij(θi; aj , bj , cj) = cj +
1− cj

1 + exp{−1.7aj(θi − bj)}
,

= 1− qij(θi; aj , bj , cj), (1)

where θi is called the ability for examinee i and aj , bj , cj

are called the discrimination parameter, difficulty param-

eter, and pseudo-guessing parameter, respectively; qij is

the probability that examinee i answers question j incor-

rectly.

2.2 Parameter estimation

Using the maximum likelihood estimation (MLE)

method, the maximum likelihood estimates θ̂i and âj , b̂j ,

ĉj for parameters θi and aj , bj , cj can be obtained by max-

imizing the likelihood function,

L =
n∏

i=1

m∏

j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj is considered, such

the model is called the Rasch model. Usually, the two-

parameter model (cj = 0) is the standard, and we will

deal with this case below. Also, in terms of recommender

systems, we will refer to examinees as users and questions

as items.

If we denote parameters θi and aj , bj , cj together by Θ,

and the observed matrix by∆ = (δij), then the estimation

process is expressed as follows.

∆ ❀ Θ̂. (3)

2.3 Estimated item response matrix

Applying the delta method to pij in equation (1) as a
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perspective; we look at the item response matrix itself di-

rectly from the matrix decomposition perspective. The

typical data cases corresponding to this new look appear

in the examination data in education.

Using the estimates for parameters in IRT, the item

response matrix can be reconstructed; we call this the

estimated item response matrix. Then, the difference be-

tween the observed and estimated item response matrices

can be computed using an appropriate matrix norm such

as the Frobenius matrix norm. Thus, it is possible to mea-

sure how close the observed item response matrix is to the

estimated item response matrix. This is the criterion to

measure the difference between two matrices.

Many researchers have proposed new methods to

achieve superiority over the standard IRT performance.

For example, multidimensional item response theory

(MIRT) (see [15]) and knowledge tracing (KT) (see

[13], [24]) have been proposed to find examinee proficiency

using parametric models. [25] describe the results of a

performance comparison among those parametric mod-

els. In the evaluation of parametric models, the log-

likelihood values are primarily used. In a nonparametric

approach, [21] show how to predict student performance

using a recommender system. In addition, [20] use a rec-

ommender system to predict student performance. Since

recommender systems often use a matrix factorization al-

gorithm, the RMSE is used to evaluate the closeness of

the two matrices. More complex cases have also been pro-

posed, with [11] integrating KT and IRT, and [26] com-

paring deep learning approaches to simple IRT.

However, unlike papers that provide such new math-

ematical models, this paper intends to examine the ef-

fectiveness of IRT itself from a different perspective as

slightly mentioned above using actual educational data

cases. To accomplish this, we use matrix decomposi-

tion (MD) perspective. [7] introduced matrix completion

(MC) and low-rank singular value decomposition (SVD)

to evaluate the difference between two matrices. By us-

ing SVD, we can obtain a low-rank matrix that is close to

the original matrix in the sense of Frobenius matrix norm.

The second challenge of this paper is to apply the method

to a number of actual examination data cases performed

at universities. By applying the matrix decomposition and

singular value decomposition methods to more than 40 ex-

amination data cases, ranging from small to large matrix

sizes, we were able to derive a very clear conclusion about

the effective approximated low-rank matrix that is equiv-

alent to the estimated item response matrix. Therefore,

the objective of the paper is to clarify the position of the

IRT performance in the sense of low-rank approximation

matrix equivalent to the estimated item response matrix

using a number of actual examination data sets.

2. Item response theory

2.1 Mathematical model

The standard IRT estimates proficiency parameters θi

(i = 1, . . . , n) and problem parameters aj , bj , cj (j =

1, . . . ,m) simultaneously by using the observed item re-

sponse matrix. Usually, this item response matrix (ma-

trix size is n×m) consists of 1/0 valued elements δij , with

the value 1 for the (i, j) element corresponding to the case

where examinee i solved question j correctly and the value

0 for the case where he/she solved it incorrectly.

Assume that the logistic probability function pij of ex-

aminee i correctly answering question j is expressed such

that

pij(θi; aj , bj , cj) = cj +
1− cj

1 + exp{−1.7aj(θi − bj)}
,

= 1− qij(θi; aj , bj , cj), (1)

where θi is called the ability for examinee i and aj , bj , cj

are called the discrimination parameter, difficulty param-

eter, and pseudo-guessing parameter, respectively; qij is

the probability that examinee i answers question j incor-

rectly.

2.2 Parameter estimation

Using the maximum likelihood estimation (MLE)

method, the maximum likelihood estimates θ̂i and âj , b̂j ,

ĉj for parameters θi and aj , bj , cj can be obtained by max-

imizing the likelihood function,

L =
n∏

i=1

m∏

j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj is considered, such

the model is called the Rasch model. Usually, the two-

parameter model (cj = 0) is the standard, and we will

deal with this case below. Also, in terms of recommender

systems, we will refer to examinees as users and questions

as items.

If we denote parameters θi and aj , bj , cj together by Θ,

and the observed matrix by∆ = (δij), then the estimation

process is expressed as follows.

∆ ❀ Θ̂. (3)

2.3 Estimated item response matrix

Applying the delta method to pij in equation (1) as a
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perspective; we look at the item response matrix itself di-

rectly from the matrix decomposition perspective. The

typical data cases corresponding to this new look appear

in the examination data in education.

Using the estimates for parameters in IRT, the item

response matrix can be reconstructed; we call this the

estimated item response matrix. Then, the difference be-

tween the observed and estimated item response matrices

can be computed using an appropriate matrix norm such

as the Frobenius matrix norm. Thus, it is possible to mea-

sure how close the observed item response matrix is to the

estimated item response matrix. This is the criterion to

measure the difference between two matrices.

Many researchers have proposed new methods to

achieve superiority over the standard IRT performance.

For example, multidimensional item response theory

(MIRT) (see [15]) and knowledge tracing (KT) (see

[13], [24]) have been proposed to find examinee proficiency

using parametric models. [25] describe the results of a

performance comparison among those parametric mod-

els. In the evaluation of parametric models, the log-

likelihood values are primarily used. In a nonparametric

approach, [21] show how to predict student performance

using a recommender system. In addition, [20] use a rec-

ommender system to predict student performance. Since

recommender systems often use a matrix factorization al-

gorithm, the RMSE is used to evaluate the closeness of

the two matrices. More complex cases have also been pro-

posed, with [11] integrating KT and IRT, and [26] com-

paring deep learning approaches to simple IRT.

However, unlike papers that provide such new math-

ematical models, this paper intends to examine the ef-

fectiveness of IRT itself from a different perspective as

slightly mentioned above using actual educational data

cases. To accomplish this, we use matrix decomposi-

tion (MD) perspective. [7] introduced matrix completion

(MC) and low-rank singular value decomposition (SVD)

to evaluate the difference between two matrices. By us-

ing SVD, we can obtain a low-rank matrix that is close to

the original matrix in the sense of Frobenius matrix norm.

The second challenge of this paper is to apply the method

to a number of actual examination data cases performed

at universities. By applying the matrix decomposition and

singular value decomposition methods to more than 40 ex-

amination data cases, ranging from small to large matrix

sizes, we were able to derive a very clear conclusion about

the effective approximated low-rank matrix that is equiv-

alent to the estimated item response matrix. Therefore,

the objective of the paper is to clarify the position of the

IRT performance in the sense of low-rank approximation

matrix equivalent to the estimated item response matrix

using a number of actual examination data sets.

2. Item response theory

2.1 Mathematical model

The standard IRT estimates proficiency parameters θi

(i = 1, . . . , n) and problem parameters aj , bj , cj (j =

1, . . . ,m) simultaneously by using the observed item re-

sponse matrix. Usually, this item response matrix (ma-

trix size is n×m) consists of 1/0 valued elements δij , with

the value 1 for the (i, j) element corresponding to the case

where examinee i solved question j correctly and the value

0 for the case where he/she solved it incorrectly.

Assume that the logistic probability function pij of ex-

aminee i correctly answering question j is expressed such

that

pij(θi; aj , bj , cj) = cj +
1− cj

1 + exp{−1.7aj(θi − bj)}
,

= 1− qij(θi; aj , bj , cj), (1)

where θi is called the ability for examinee i and aj , bj , cj

are called the discrimination parameter, difficulty param-

eter, and pseudo-guessing parameter, respectively; qij is

the probability that examinee i answers question j incor-

rectly.

2.2 Parameter estimation

Using the maximum likelihood estimation (MLE)

method, the maximum likelihood estimates θ̂i and âj , b̂j ,

ĉj for parameters θi and aj , bj , cj can be obtained by max-

imizing the likelihood function,

L =
n∏

i=1

m∏

j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj is considered, such

the model is called the Rasch model. Usually, the two-

parameter model (cj = 0) is the standard, and we will

deal with this case below. Also, in terms of recommender

systems, we will refer to examinees as users and questions

as items.

If we denote parameters θi and aj , bj , cj together by Θ,

and the observed matrix by∆ = (δij), then the estimation

process is expressed as follows.

∆ ❀ Θ̂. (3)

2.3 Estimated item response matrix

Applying the delta method to pij in equation (1) as a
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perspective; we look at the item response matrix itself di-

rectly from the matrix decomposition perspective. The

typical data cases corresponding to this new look appear

in the examination data in education.

Using the estimates for parameters in IRT, the item

response matrix can be reconstructed; we call this the

estimated item response matrix. Then, the difference be-

tween the observed and estimated item response matrices

can be computed using an appropriate matrix norm such

as the Frobenius matrix norm. Thus, it is possible to mea-

sure how close the observed item response matrix is to the

estimated item response matrix. This is the criterion to

measure the difference between two matrices.

Many researchers have proposed new methods to

achieve superiority over the standard IRT performance.

For example, multidimensional item response theory

(MIRT) (see [15]) and knowledge tracing (KT) (see

[13], [24]) have been proposed to find examinee proficiency

using parametric models. [25] describe the results of a

performance comparison among those parametric mod-

els. In the evaluation of parametric models, the log-

likelihood values are primarily used. In a nonparametric

approach, [21] show how to predict student performance

using a recommender system. In addition, [20] use a rec-

ommender system to predict student performance. Since

recommender systems often use a matrix factorization al-

gorithm, the RMSE is used to evaluate the closeness of

the two matrices. More complex cases have also been pro-

posed, with [11] integrating KT and IRT, and [26] com-

paring deep learning approaches to simple IRT.

However, unlike papers that provide such new math-

ematical models, this paper intends to examine the ef-

fectiveness of IRT itself from a different perspective as

slightly mentioned above using actual educational data

cases. To accomplish this, we use matrix decomposi-

tion (MD) perspective. [7] introduced matrix completion

(MC) and low-rank singular value decomposition (SVD)

to evaluate the difference between two matrices. By us-

ing SVD, we can obtain a low-rank matrix that is close to

the original matrix in the sense of Frobenius matrix norm.

The second challenge of this paper is to apply the method

to a number of actual examination data cases performed

at universities. By applying the matrix decomposition and

singular value decomposition methods to more than 40 ex-

amination data cases, ranging from small to large matrix

sizes, we were able to derive a very clear conclusion about

the effective approximated low-rank matrix that is equiv-

alent to the estimated item response matrix. Therefore,

the objective of the paper is to clarify the position of the

IRT performance in the sense of low-rank approximation

matrix equivalent to the estimated item response matrix

using a number of actual examination data sets.

2. Item response theory

2.1 Mathematical model

The standard IRT estimates proficiency parameters θi

(i = 1, . . . , n) and problem parameters aj , bj , cj (j =

1, . . . ,m) simultaneously by using the observed item re-

sponse matrix. Usually, this item response matrix (ma-

trix size is n×m) consists of 1/0 valued elements δij , with

the value 1 for the (i, j) element corresponding to the case

where examinee i solved question j correctly and the value

0 for the case where he/she solved it incorrectly.

Assume that the logistic probability function pij of ex-

aminee i correctly answering question j is expressed such

that

pij(θi; aj , bj , cj) = cj +
1− cj

1 + exp{−1.7aj(θi − bj)}
,

= 1− qij(θi; aj , bj , cj), (1)

where θi is called the ability for examinee i and aj , bj , cj

are called the discrimination parameter, difficulty param-

eter, and pseudo-guessing parameter, respectively; qij is

the probability that examinee i answers question j incor-

rectly.

2.2 Parameter estimation

Using the maximum likelihood estimation (MLE)

method, the maximum likelihood estimates θ̂i and âj , b̂j ,

ĉj for parameters θi and aj , bj , cj can be obtained by max-

imizing the likelihood function,

L =
n∏

i=1

m∏

j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj is considered, such

the model is called the Rasch model. Usually, the two-

parameter model (cj = 0) is the standard, and we will

deal with this case below. Also, in terms of recommender

systems, we will refer to examinees as users and questions

as items.

If we denote parameters θi and aj , bj , cj together by Θ,

and the observed matrix by∆ = (δij), then the estimation

process is expressed as follows.

∆ ❀ Θ̂. (3)

2.3 Estimated item response matrix

Applying the delta method to pij in equation (1) as a
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function of Θ̂, we can obtain δ̂ij which is a continuous

value in [0, 1]. This estimation process can be expressed

such that

Θ̂ ❀ ∆̂, (4)

and we call ∆̂ the estimated item response matrix. The

value δ̂ij is corresponding to the probability of correctly

answering the question using equation (1).

Considering such treatment, the δij value is extended

from a discrete value of 1/0 to a continuous value of [0, 1],

although δij takes values δij = 1 if the question is success-

fully answered and δij = 0 if it is not. We also deal with

the null value of the element (i, j), corresponding to the

case where the examinee i has not tackle problem j, or

the case that the response is unknown. How to deal with

such cases is explained in [9], [16], [17].

Once, estimates âj and b̂j for aj and bj are obtained,

we can perform estimation procedure for θi to each i in-

dependently. If there is a sequence of random variables

Xl satisfying
√
l[Xl − θi]

d−→N (0,σ2
i ), (5)

where θi and σ2
i are finite valued constants, N is a normal

distribution, and
d−→ denotes convergence in distribution,

then
√
l[g(Xl)− g(θi)]

d−→N (0,σ2
i · [g′(θi)]2), (6)

for any function g satisfying the property that g′(θ) exists

and is non-zero valued. According to this, and regarding

g as pij in equation (1), δ̂ij becomes optimal in the likeli-

hood sense. Therefore, ∆̂ is optimal in the mathematical

model assuming equation (1) and the parameter space of

Θ.

3. Singular value decomposition

3.1 Singular value decomposition procedure

Assuming that A = (aij) is a m×n matrix. Then, ATA

becomes a n × n symmetric matrix, and AAT becomes a

m × m symmetric matrix, where AT denotes the trans-

pose of A. Eigen values and eigen vectors to these two

matrices ATA and AAT are the same if they exist. We

denote the eigen values and eigen vectors to matrix ATA

as {ξ1, ξ2, · · · , ξn} and {v1,v2, · · · ,vn}. That is,

ATAvi = ξivi. (7)

Eigen values can be reordered such that ξ1 ≥ ξ2 ≥ · · · ≥
ξr > 0, ξr+1 = · · · = ξn = 0, where r is the rank of ATA.

Since ATA is symmetric, eigen vectors can be made as or-

thonormal system. That is, vi · vj = Iij , where Iij is the

indicator function; i.e., Iii = 1, and Iij = 0 (i ̸= j).

We make vector ui by ui = Avi/σi, (i ≥ r), where

σi =
√
ξi. In addition, if we produce matrices U = (ui)

and V = (vj), then A can be expressed as A = UΣV T,

or equivalently, A =
∑r

l=1 σlulvT
l . Here, Σ is a diagonal

matrix using σi. This is the typical singular value decom-

position (SVD) (see [5], [18], [19]).

3.2 Generating the low-rank matrix

We define Ak such that

Ak =
k∑

l=1

σlulv
T
l , (8)

using the first k columns in the matrices of U and V .

This procedure generates the low-rank matrix Ak for A as

shown below.

It is interesting to remind the following theorem ([3]).

Theorem1 (Eckart-Young)

1) rank(Ak) = k

2) For any m× n matrix B, (rank(B) ≤ k),

||A−Ak||F = min
B,rank(B)≤k

||A−B||F = (
n∑

l=k+1

σ2
l )

1/2,

where || · ||F means the Frobenius matrix norm, i.e.,

||(aij)||F = (
∑

i,j |aij |2)1/2.
The theorem claims that Ak is best approximated to A

among all the matrices with rank of less than k+1 in the

sense of matrix norm.

3.3 Construction of the low-rank item response

matrix

When we regard A as the observed item response ma-

trix ∆, and we regard Ak as ∆k, we can construct the

low-rank item response matrix ∆k from ∆. When it is

desired to emphasize that ∆k is derived from SVD, it is

denoted as ∆SVD
k if necessary.

4. Matrix decomposition

4.1 Matrix decomposition procedure

SVD is a promising method to find an approximate ma-

trix that is close to a certain matrix in the sense of the ma-

trix norm. However, it requires that all the elements must

be occupied. Occasionally, one encounters cases where not

all elements of the observed response matrix are occupied.

In such cases, the matrix decomposition (MD) method

([12]) can be used; other methods, such as the imputation

method ([22]) or the matrix completion method ([7]) are

also used.

MD is similar to SVD. The target matrix R ∈ Rm×n

can be constructed from two matrices U ∈ Rm×k and
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ਤ 1: ଌԠϚτϦΫε∆ͱਪఆԠϚτϦΫε؍ ∆̂[9]

4.1 IRTʹΑΔਪఆԠϚτϦΫε

∆ଌԠϚτϦΫε؍ = (δij)ʹ࠷ਪఆ๏Λద༻͠ɼύ

ϥϝʔλΘͷਪఆ Θ̂ΛٻΊɼ͜ΕΛͯͬਪఆԠϚτ

ϦΫε ∆̂ΛٻΊͨͷΛɼਤ 1ӈʹࣔ͢ɽઌʹड़ͨΑ͏

ʹɼݪཧ͔Β͜ͷϚτϦΫε IRTϞσϧͷͱͰ

ྑ࠷ʹͳ͍ͬͯΔɽ͔͠͠ɼਤ 1ͷ ∆̂ͱ∆Λൺֱ͢Δͱɼ

ਪఆԠϚτϦΫε ∆͔̂Β؍ଌԠϚτϦΫε ∆Λ͓͓

Ε͍ͯΔҹ͞ࣅΔ͜ͱͰ͖͕ɼ͋·ΓΑۙ͘ݟʹ͔·

ͳ͍ɽ

͜ΕΛతʹ֬ೝ͢ΔͨΊʹɼFrobeniusͷϚτϦΫ

εϊϧϜΛٻΊͯΈΔɽಉ͡େ͖͞ͷϚτϦΫεA = (aij)

ͱ B = (bij)ͷҧ͍Λ FrobeniusͷϚτϦΫεϊϧϜͰද

͢ͱɼ

RMSE(A,B) =

√√√√ 1

nm

n∑

i=1

m∑

j=1

(aij − bij)2

=

√
1

nm
(||A−B||F )2. (7)

ͱͳΔͷͰɼ͜ ΕΛਪఆԠϚτϦΫε ∆̂ͱ؍ଌԠϚτϦ

Ϋε∆ͱͷҧ͍ΛݟΔͨΊʹͯ͠ࢉܭΈΔͱɼRMSE(∆̂,∆)

 0.3915ͱͳͬͨɽ͜ͷ͜ͱɼ؍ଌ δij ͕ਪఆ δ̂ij ͱ

ฏ͓͓ͯ͠ۉΑͦ 0.3915Ε͍ͯΔ͜ͱΛࣔ͢ɽײతʹɼ

͜ͷখ͍͞Ͱͳ͍ɽ

4.2 ಛҟղʹΑΔϥϯΫԠϚτϦΫε

্ʹड़ͨΑ͏ʹɼIRTΛ༻͍ͨਪఆ δ̂ij ྑ࠷ͳਪ

ఆͰ͋ͬͯɼਪఆԠϚτϦΫε ∆̂؍ଌԠϚτϦ

Ϋε ∆Λਖ਼֬ʹ͍ͯ͠ݱ࠶ΔΑ͏ʹ͑ݟͳ͍ɽͦ͜Ͱɼ

͜͜Ͱɼ∆͕̂ SVDʹΑͬͯੜ͞ΕΔϥϯΫϚτϦ

Ϋε ∆k ͷͲͷϥϯΫͷϚτϦΫεʹ࠷͍͔ۙΛϚτϦ

ΫεϊϧϜͷҙຯͰௐͯɼͦΕΛਪఆԠϚτϦΫε ∆̂

ͷ؍ଌԠϚτϦΫε∆ͷۙࣅͱͯ͠ఆٛ͢Δɽ

ද 1ʹɼk = 1, . . . , 5, 10, 20, 31ͷͱ͖ͷ RMSE(∆k,∆)

ͷΛࣔ͢ɽදʹɼRMSE(∆̂,∆)ͷซ͍ͯ͠هΔɽද

͔ΒɼRMSE(∆̂,∆)ɼRMSE(∆1,∆)ͱRMSE(∆2,∆)ͷ

ؒʹҐஔ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ∆ͷϥϯΫ 31Ͱ͋

Δʹ͔͔ΘΒͣɼਪఆԠϚτϦΫε ∆̂Θ͔ͣϥϯΫ

 2ఔͷϥϯΫϚτϦΫε ∆2 ΑΓ؍ଌԠϚτϦ

Ϋε∆ͷۙࣅ͕ѱ͍ɽͭ·ΓɼIRTਪఆԠϚτϦΫ

εͷ؍ଌԠϚτϦΫεͷݱ࠶͘ߴͳͦ͞͏ͩͱ

͍͏͜ͱ͕֬ೝͰ͖Δɽ͜ͷ͜ͱɼIRTϞσϧԼͰͷ࠷

ਪఆྔ͔Β࡞ΒΕΔԠϚτϦΫεྑ࠷Ͱ͋Δͱ͍͏

͔Βিܸతͳ݁ՌͰ͋Δɽ؍

ਤ 2ʹɼk = 2ͱ k = 10ͷͱ͖ͷ SVD͔Β࡞ΒΕΔϥ

ϯΫϚτϦΫεΛࣔ͢ɽk = 2ͷͱ͖ͷϥϯΫϚτϦΫε

∆2ਤ 1ͷਪఆԠϚτϦΫε ∆̂ͱΑ͓ͯ͘ࣅΓɼk = 5

ͷͱ͖ͷϥϯΫϚτϦΫε∆10 ਤ 1ͷ؍ଌԠϚτϦ

Ϋε∆ΛΑΓ͍ۙͯ͠ࣅΔ͜ͱ͕Θ͔Δɽ

ද 1: ଌԠϚτϦΫε؍ ∆ͱϥϯΫϚτϦΫε ∆k ͷ

ࠩͷ RMSE[9]

k RMSE(∆k,∆) RMSE(∆̂,∆)

0.3915
1 0.4066
2 0.3851
3 0.3652
4 0.3479
5 0.3306
10 0.2562
20 0.1325
31 0

ਤ 2: ϥϯΫԠϚτϦΫε∆2 ͱ∆10

͔͠͠ͳ͕Βɼ͜Εɼ͋Δେֶͷઢܗͷςετʹ

CBTΛ༻͍ͨ݁ՌͷҰྫͰ͋Γɼ্ʹड़ͨΑ͏ͳੑ࣭͕

ଞͷ߹ʹΓཱ͔ͭͲ͏͔Θ͔Βͳ͍ɽͦ͜Ͱɼଞ

ͷ CBTͷ݁Ռʹ͍ͭͯಉ༷ͷ͜ͱΛௐͯΈΔ͜ͱʹ

ͨ͠ɽ

4.3 42έʔεͷCBTͷ݁Ռ

͜͜Ͱɼද 2ʹࣔ͢ 42έʔεͷՊͷ CBT݁ՌͰͷ

ଌԠϚτϦΫεʹ͍ͭͯɼਪఆԠϚτϦΫεͱϥϯ؍

ΫԠϚτϦΫεͷҧ͍ΛௐͯΈͨɽ42έʔεʹέʔ

ε Aؚ·Ε͍ͯΔɽडऀݧͷରେֶ 1-2ੜͰɼ

ͷՊɼ֬ɼ౷ֶܭɼৗඍํఔࣜɼඍੵɼઢ

IRTの応答マトリクス再構築能力を評価したい

観測マトリクスとの差のノルムを求める

マトリクス分解から再構成されたマトリクスの

10

IRTから再構成されたマトリクスと
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V ∈ Rn×k, but the decomposed form has not the diago-

nal singular value matrix found in SVD. MD is described

as

R = UV T. (9)

Using the values of the non-null elements of A, we find U

and V so that

E =
m∑

i=1

n∑

j=1

Iij(aij − rij)
2 (10)

becomes small, where rij =
∑k

l=1 uilvjl, and Iij is the in-

dicator function such that Iij = 1 if aij is non-null and

Iij = 0 if aij is null. For stable computation, we use an-

other function with penalty terms such that

W =
m∑

i=1

n∑

j=1

Iij(aij − rij)
2 + ku

m∑

i=1

k∑

l=1

u2
il + kv

n∑

j=1

k∑

l=1

v2jl,

where, ku and kv are regularization factors to prevent

overfitting. To find the optimum value, we use the descent

method ([4], [14]). From appropriately set initial values

of u(0)
il and v(0)jl , we proceed the following iterations until

|u(t+1)
il − u(t)

il | and |v(t+1)
jl − v(t)jl | are sufficiently small.

u(t+1)
il ← u(t)

il − λ
∂W

∂uil
|(t)

v(t+1)
jl ← v(t)jl − λ

∂W

∂vjl
|(t), (11)

where, λ is the learning coefficient. This is a typical MD

procedure ([12]).

4.2 Construction of the low-rank item response

matrix

When only k vectors are used for the matrices U and

V , we denote R in such a case as Rk. As in the SVD case,

when we regard R as the observed item response matrix

∆, and we regard Rk as ∆k, we can construct the low-rank

item response matrix ∆k from ∆. When it is desired to

emphasize that ∆k is derived from MD, it is denoted as

∆MD
k if necessary.

5. Examination data analysis (complete
matrix treatment)

5.1 A typical example case of the observed item

response matrix

As a typical case for complete matrix treatment, we use

an observed item response matrix obtained from a mathe-

matics midterm examination given at a certain university.

The number of examinees n is 216 and the number of ques-

tions m is 31. There are no missing data in this matrix.

We name this example case A.

The figure on the left in Figure 1 shows the observed

item response matrix. In the figure, only the responses of

28 users are shown for clarity. This matrix is composed

of binary elements, with 1 for correct answers and 0 for

incorrect answers. The observed item response matrix is

denoted as ∆ = (δij).

ਤ 1 Observed item response matrix and estimated item re-

sponse matrix.

5.2 Estimated item response matrix by using IRT

Applying the maximum likelihood estimation method

to this observed item response matrix ∆ yields the max-

imum likelihood estimate Θ̂ for the parameter Θ. Using

this estimated value Θ̂, the estimated item response ma-

trix ∆̂ can be reconstructed. As explained earlier, this ∆̂

is optimal in the sense of the likelihood principle. The

figure on the right in Figure 1 shows this ∆̂. Comparing

∆̂ and ∆ in Figure 1, we can roughly imagine the original

observed item response matrix ∆ from ∆̂. However, this

approximation appears to be inaccurate.

To see if this is correct, we will now use the Frobenius

matrix norm. Using this matrix norm, the proximity of

two equal-sized matrices A = (aij) and B = (bij) can be

expressed by the RMSE(A,B) such that

RMSE(A,B) =

√√√√ 1

nm

n∑

i=1

m∑

j=1

(aij − bij)2

=

√
1

nm
(||A−B||F )2. (12)

In this case, the RMSE(∆̂,∆) of the difference between

the observed item response matrix ∆ and the estimated

item response matrix ∆̂ is computed to be 0.3915. This

indicates that the distance between an observed δij and

its estimated value δ̂ij lies on average around 0.3915. In-

tuitively, this value does not seem small.
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観測マトリクスとの誤差を求める
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観測マトリクスとの誤差を求める

特異値分解(SVD)から再構成された低近似マトリクスの

マトリクス分解から再構成されたマトリクスの

IRTと同程度の近似ができるランクkを求める 

k（分解の複雑度） 
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V ∈ Rn×k, but the decomposed form has not the diago-

nal singular value matrix found in SVD. MD is described

as

R = UV T. (9)

Using the values of the non-null elements of A, we find U

and V so that

E =
m∑

i=1

n∑

j=1

Iij(aij − rij)
2 (10)

becomes small, where rij =
∑k

l=1 uilvjl, and Iij is the in-

dicator function such that Iij = 1 if aij is non-null and

Iij = 0 if aij is null. For stable computation, we use an-

other function with penalty terms such that

W =
m∑

i=1

n∑

j=1

Iij(aij − rij)
2 + ku

m∑

i=1

k∑

l=1

u2
il + kv

n∑

j=1

k∑

l=1

v2jl,

where, ku and kv are regularization factors to prevent

overfitting. To find the optimum value, we use the descent

method ([4], [14]). From appropriately set initial values

of u(0)
il and v(0)jl , we proceed the following iterations until

|u(t+1)
il − u(t)

il | and |v(t+1)
jl − v(t)jl | are sufficiently small.

u(t+1)
il ← u(t)

il − λ
∂W

∂uil
|(t)

v(t+1)
jl ← v(t)jl − λ

∂W

∂vjl
|(t), (11)

where, λ is the learning coefficient. This is a typical MD

procedure ([12]).

4.2 Construction of the low-rank item response

matrix

When only k vectors are used for the matrices U and

V , we denote R in such a case as Rk. As in the SVD case,

when we regard R as the observed item response matrix

∆, and we regard Rk as ∆k, we can construct the low-rank

item response matrix ∆k from ∆. When it is desired to

emphasize that ∆k is derived from MD, it is denoted as

∆MD
k if necessary.

5. Examination data analysis (complete
matrix treatment)

5.1 A typical example case of the observed item

response matrix

As a typical case for complete matrix treatment, we use

an observed item response matrix obtained from a mathe-

matics midterm examination given at a certain university.

The number of examinees n is 216 and the number of ques-

tions m is 31. There are no missing data in this matrix.

We name this example case A.

The figure on the left in Figure 1 shows the observed

item response matrix. In the figure, only the responses of

28 users are shown for clarity. This matrix is composed

of binary elements, with 1 for correct answers and 0 for

incorrect answers. The observed item response matrix is

denoted as ∆ = (δij).

ਤ 1 Observed item response matrix and estimated item re-

sponse matrix.

5.2 Estimated item response matrix by using IRT

Applying the maximum likelihood estimation method

to this observed item response matrix ∆ yields the max-

imum likelihood estimate Θ̂ for the parameter Θ. Using

this estimated value Θ̂, the estimated item response ma-

trix ∆̂ can be reconstructed. As explained earlier, this ∆̂

is optimal in the sense of the likelihood principle. The

figure on the right in Figure 1 shows this ∆̂. Comparing

∆̂ and ∆ in Figure 1, we can roughly imagine the original

observed item response matrix ∆ from ∆̂. However, this

approximation appears to be inaccurate.

To see if this is correct, we will now use the Frobenius

matrix norm. Using this matrix norm, the proximity of

two equal-sized matrices A = (aij) and B = (bij) can be

expressed by the RMSE(A,B) such that

RMSE(A,B) =

√√√√ 1

nm

n∑

i=1

m∑

j=1

(aij − bij)2

=

√
1

nm
(||A−B||F )2. (12)

In this case, the RMSE(∆̂,∆) of the difference between

the observed item response matrix ∆ and the estimated

item response matrix ∆̂ is computed to be 0.3915. This

indicates that the distance between an observed δij and

its estimated value δ̂ij lies on average around 0.3915. In-

tuitively, this value does not seem small.
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A = (a1,a2, · · · ,an) =

⎛

⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am1 · · · amn

⎞

⎟⎟⎟⎟⎟⎟⎠
= (aij) (9.1)

ͱද͢ɽAͰԣʹฒΜͩͷ·ͱ·ΓΛߦɼॎʹฒΜͩͷ·ͱ·ΓΛྻ

ͱΑͿɽ͜ͷ߹ɼߦmݸɼྻ nݸͳͷͰɼAmߦ nྻͷϚτϦ

Ϋεʢm× nϚτϦΫεͱॻ͘ʣͱͳΔɽaijΛϚτϦΫεͷཁૉͱ͍͏ɽ

͜ͷ߹ɼཁૉͷmnݸʹͳΔɽ

m × nϚτϦΫεAͱm × nϚτϦΫεBͷC = A + BɼAͷ

ཁૉͱBཁૉͷͱఆٛ͞ΕɼC = (cij) = (aij + bij)Ͱ͋ΔɽҰํɼ

m×nϚτϦΫεAͱn× kϚτϦΫεBͷੵC = ABɼCͷཁૉ cij

Λ cij =
n∑

l=1

ailblj ʹΑͬͯఆٛ͢Δɽ͜ͷΑ͏ʹఆٛ͢Δཧ༝ޙͰड़

Δɽ

m × nϚτϦΫεAʹϕΫτϧx = (x1, x2, · · · , xn)
TΛ͔͚Δͱ͍͏

ͷɼ্ͰϚτϦΫεBΛ nߦ 1ྻͷϚτϦΫεͱղऍ͢Εɼnߦ 1ྻ

ͷϚτϦΫεɼͭ·ΓɼϕΫτϧ b = (b1, b2, · · · , bn)T͕࡞ΒΕΔɽͭ·
ΓɼAx = bɼ۩ମతʹ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

(9.2)

ͱͳΔɽ͜Εɼx1, x2, · · · , xnΛະͱ͢Δmݸͷ࿈ཱҰํ࣍ఔࣜͷ

ͳ͍ͬͯΔɽʹܗ

[ઢ૾ࣸܗ]
RnͷதͷϕΫτϧ x͕ࣸ૾ f ʹΑͬͯ RmͷதͷϕΫτϧ yʹࣸ͞

ΕΔͱ͢Δɽ͜ΕΛ y = f(x)ͱॻ͘ɽ͜ͷͱ͖ͷ x ∈ Rnͷू߹Λू࢝
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Λ cij =
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Δɽ
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ͱॻ͖දͤΔ͜ͱ͕Θ͔Δɽ͜ΕΛಛҟղͱ͍͏ɽ·ͨɼ

U = (u1,u2, · · · ,ur,ur+1, · · · ,um),

V T = (vT
1 ,v

T
2 , · · · ,vT

r ,v
T
r+1, · · · ,vT

n)
T (9.31)

Ͱ͋Δ͔Βɼಛҟղɼ

A =
r∑

l=1

σlulv
T
l

ͱදݱͰ͖Δɽ͜Ε·ͰɼATAΛ༻͍ͨಛҟղʹ͍ͭͯઆ໌͠

͕ͨɼAAT༻͍ͨಛҟղʹ͍ͭͯಉ༷Ͱɼm×mରশϚτϦΫε

ΛऔΓѻ͏͜ͱʹͳΔɽ

ਤ 9.4ʹɼઌͷྫͰࣔͨ͠ϚτϦΫεA = ((3, 1)T, (2, 2)T) ͔ΒATAΛ

༗ϕΫτϧࣔͯ͠ݻ༗ϕΫτϧʹՃ͑ͯɼATAͷݻΓɼͱͷAͷ࡞

͍ΔɽATAʹΑͬͯม͞Εͨ RnͰͷ୯Ґԁʢl2ϊϧϜͷେ͖͕͞ 1ʣ
ม͞ΕͨઌͰପԁʹͳ͓ͬͯΓɼ2ͭͷݻ͕ܘ༗ʹରԠ͠ɼͦͷ
ฏํ͕ࠜಛҟʹͳ͍ͬͯΔ͜ͱΛࣔ͢ɽ

[ಛҟղͷҙٛ]

AͷಛҟղA =
r∑

l=1

σlulv
T
l ʹରͯ͠ɼAk =

k∑

l=1

σlulv
T
l Λ࡞Δɽ

ͨͩ͠ɼ1 ≤ k < rͰ͋Δɽ͜ͷͱ͖ɼ࣍ͷఆཧ͕Γཱͭ͜ͱ͕Θ͔ͬ

͍ͯΔɽ

ఆཧ 4 (Eckart-Youngͷࣅۙྑ࠷ఆཧ).
1) rank(Ak) = kͰ͋Δɽ

2) rank(B) ≤ kͰ͋ΔΑ͏ͳm× nϚτϦΫεBʹରͯ͠ɼ

||A−Ak|| = min
B,rank(B)≤k

||A−B|| = σk+1, ͋Δ͍

||A−Ak||F = min
B,rank(B)≤k

||A−B||F =
n∑

l=k+1

σ2
l (9.32)

ಛҟղ͔Β߲ͨݟԠཧͷ৽ධՁɿ
େֶֶͷCBTʹΑΔςετ

ኍ ӳ༤ʢཹٱถେֶόΠΦ౷ܭηϯλʔɼதԝେֶڀݚ։ൃߏػʣ
hirose hideo@kurume-u.ac.jp, hhideo001@g.chuo-u.ac.jp

1 ͡Ίʹ

ui =

⎛

⎜⎜⎜⎜⎝

ui1

ui2

...

uim

⎞

⎟⎟⎟⎟⎠
, vj =

⎛

⎜⎜⎜⎜⎝

vj1

vj2
...

vjn

⎞

⎟⎟⎟⎟⎠
, · · · , (1)

ul =

⎛

⎜⎜⎜⎜⎝

ul1

ul2

...

ulm

⎞

⎟⎟⎟⎟⎠
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Ͱ͋Δ͔Βɼಛҟղɼ

A =
r∑

l=1

σlulv
T
l

ͱදݱͰ͖Δɽ͜Ε·ͰɼATAΛ༻͍ͨಛҟղʹ͍ͭͯઆ໌͠

͕ͨɼAAT༻͍ͨಛҟղʹ͍ͭͯಉ༷Ͱɼm×mରশϚτϦΫε

ΛऔΓѻ͏͜ͱʹͳΔɽ

ਤ 9.4ʹɼઌͷྫͰࣔͨ͠ϚτϦΫεA = ((3, 1)T, (2, 2)T) ͔ΒATAΛ

༗ϕΫτϧࣔͯ͠ݻ༗ϕΫτϧʹՃ͑ͯɼATAͷݻΓɼͱͷAͷ࡞

͍ΔɽATAʹΑͬͯม͞Εͨ RnͰͷ୯Ґԁʢl2ϊϧϜͷେ͖͕͞ 1ʣ
ม͞ΕͨઌͰପԁʹͳ͓ͬͯΓɼ2ͭͷݻ͕ܘ༗ʹରԠ͠ɼͦͷ
ฏํ͕ࠜಛҟʹͳ͍ͬͯΔ͜ͱΛࣔ͢ɽ

[ಛҟղͷҙٛ]
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r∑

l=1

σlulv
T
l ʹରͯ͠ɼAk =

k∑

l=1

σlulv
T
l Λ࡞Δɽ

ͨͩ͠ɼ1 ≤ k < rͰ͋Δɽ͜ͷͱ͖ɼ࣍ͷఆཧ͕Γཱͭ͜ͱ͕Θ͔ͬ

͍ͯΔɽ

ఆཧ 4 (Eckart-Youngͷࣅۙྑ࠷ఆཧ).
1) rank(Ak) = kͰ͋Δɽ

2) rank(B) ≤ kͰ͋ΔΑ͏ͳm× nϚτϦΫεBʹରͯ͠ɼ

||A−Ak|| = min
B,rank(B)≤k

||A−B|| = σk+1, ͋Δ͍

||A−Ak||F = min
B,rank(B)≤k

||A−B||F =
n∑
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σ2
l (9.32)
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perspective; we look at the item response matrix itself di-

rectly from the matrix decomposition perspective. The

typical data cases corresponding to this new look appear

in the examination data in education.

Using the estimates for parameters in IRT, the item

response matrix can be reconstructed; we call this the

estimated item response matrix. Then, the difference be-

tween the observed and estimated item response matrices

can be computed using an appropriate matrix norm such

as the Frobenius matrix norm. Thus, it is possible to mea-

sure how close the observed item response matrix is to the

estimated item response matrix. This is the criterion to

measure the difference between two matrices.

Many researchers have proposed new methods to

achieve superiority over the standard IRT performance.

For example, multidimensional item response theory

(MIRT) (see [15]) and knowledge tracing (KT) (see

[13], [24]) have been proposed to find examinee proficiency

using parametric models. [25] describe the results of a

performance comparison among those parametric mod-

els. In the evaluation of parametric models, the log-

likelihood values are primarily used. In a nonparametric

approach, [21] show how to predict student performance

using a recommender system. In addition, [20] use a rec-

ommender system to predict student performance. Since

recommender systems often use a matrix factorization al-

gorithm, the RMSE is used to evaluate the closeness of

the two matrices. More complex cases have also been pro-

posed, with [11] integrating KT and IRT, and [26] com-

paring deep learning approaches to simple IRT.

However, unlike papers that provide such new math-

ematical models, this paper intends to examine the ef-

fectiveness of IRT itself from a different perspective as

slightly mentioned above using actual educational data

cases. To accomplish this, we use matrix decomposi-

tion (MD) perspective. [7] introduced matrix completion

(MC) and low-rank singular value decomposition (SVD)

to evaluate the difference between two matrices. By us-

ing SVD, we can obtain a low-rank matrix that is close to

the original matrix in the sense of Frobenius matrix norm.

The second challenge of this paper is to apply the method

to a number of actual examination data cases performed

at universities. By applying the matrix decomposition and

singular value decomposition methods to more than 40 ex-

amination data cases, ranging from small to large matrix

sizes, we were able to derive a very clear conclusion about

the effective approximated low-rank matrix that is equiv-

alent to the estimated item response matrix. Therefore,

the objective of the paper is to clarify the position of the

IRT performance in the sense of low-rank approximation

matrix equivalent to the estimated item response matrix

using a number of actual examination data sets.

2. Item response theory

2.1 Mathematical model

The standard IRT estimates proficiency parameters θi

(i = 1, . . . , n) and problem parameters aj , bj , cj (j =

1, . . . ,m) simultaneously by using the observed item re-

sponse matrix. Usually, this item response matrix (ma-

trix size is n×m) consists of 1/0 valued elements δij , with

the value 1 for the (i, j) element corresponding to the case

where examinee i solved question j correctly and the value

0 for the case where he/she solved it incorrectly.

Assume that the logistic probability function pij of ex-

aminee i correctly answering question j is expressed such

that

pij(θi; aj , bj , cj) = cj +
1− cj

1 + exp{−1.7aj(θi − bj)}
,

= 1− qij(θi; aj , bj , cj), (1)

where θi is called the ability for examinee i and aj , bj , cj

are called the discrimination parameter, difficulty param-

eter, and pseudo-guessing parameter, respectively; qij is

the probability that examinee i answers question j incor-

rectly.

2.2 Parameter estimation

Using the maximum likelihood estimation (MLE)

method, the maximum likelihood estimates θ̂i and âj , b̂j ,

ĉj for parameters θi and aj , bj , cj can be obtained by max-

imizing the likelihood function,

L =
n∏

i=1

m∏

j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj is considered, such

the model is called the Rasch model. Usually, the two-

parameter model (cj = 0) is the standard, and we will

deal with this case below. Also, in terms of recommender

systems, we will refer to examinees as users and questions

as items.

If we denote parameters θi and aj , bj , cj together by Θ,

and the observed matrix by∆ = (δij), then the estimation

process is expressed as follows.

∆ ❀ Θ̂. (3)

2.3 Estimated item response matrix

Applying the delta method to pij in equation (1) as a
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perspective; we look at the item response matrix itself di-

rectly from the matrix decomposition perspective. The

typical data cases corresponding to this new look appear

in the examination data in education.

Using the estimates for parameters in IRT, the item

response matrix can be reconstructed; we call this the

estimated item response matrix. Then, the difference be-

tween the observed and estimated item response matrices

can be computed using an appropriate matrix norm such

as the Frobenius matrix norm. Thus, it is possible to mea-

sure how close the observed item response matrix is to the

estimated item response matrix. This is the criterion to

measure the difference between two matrices.

Many researchers have proposed new methods to

achieve superiority over the standard IRT performance.

For example, multidimensional item response theory

(MIRT) (see [15]) and knowledge tracing (KT) (see

[13], [24]) have been proposed to find examinee proficiency

using parametric models. [25] describe the results of a

performance comparison among those parametric mod-

els. In the evaluation of parametric models, the log-

likelihood values are primarily used. In a nonparametric

approach, [21] show how to predict student performance

using a recommender system. In addition, [20] use a rec-

ommender system to predict student performance. Since

recommender systems often use a matrix factorization al-

gorithm, the RMSE is used to evaluate the closeness of

the two matrices. More complex cases have also been pro-

posed, with [11] integrating KT and IRT, and [26] com-

paring deep learning approaches to simple IRT.

However, unlike papers that provide such new math-

ematical models, this paper intends to examine the ef-

fectiveness of IRT itself from a different perspective as

slightly mentioned above using actual educational data

cases. To accomplish this, we use matrix decomposi-

tion (MD) perspective. [7] introduced matrix completion

(MC) and low-rank singular value decomposition (SVD)

to evaluate the difference between two matrices. By us-

ing SVD, we can obtain a low-rank matrix that is close to

the original matrix in the sense of Frobenius matrix norm.

The second challenge of this paper is to apply the method

to a number of actual examination data cases performed

at universities. By applying the matrix decomposition and

singular value decomposition methods to more than 40 ex-

amination data cases, ranging from small to large matrix

sizes, we were able to derive a very clear conclusion about

the effective approximated low-rank matrix that is equiv-

alent to the estimated item response matrix. Therefore,

the objective of the paper is to clarify the position of the

IRT performance in the sense of low-rank approximation

matrix equivalent to the estimated item response matrix

using a number of actual examination data sets.

2. Item response theory

2.1 Mathematical model

The standard IRT estimates proficiency parameters θi

(i = 1, . . . , n) and problem parameters aj , bj , cj (j =

1, . . . ,m) simultaneously by using the observed item re-

sponse matrix. Usually, this item response matrix (ma-

trix size is n×m) consists of 1/0 valued elements δij , with

the value 1 for the (i, j) element corresponding to the case

where examinee i solved question j correctly and the value

0 for the case where he/she solved it incorrectly.

Assume that the logistic probability function pij of ex-

aminee i correctly answering question j is expressed such

that

pij(θi; aj , bj , cj) = cj +
1− cj

1 + exp{−1.7aj(θi − bj)}
,

= 1− qij(θi; aj , bj , cj), (1)

where θi is called the ability for examinee i and aj , bj , cj

are called the discrimination parameter, difficulty param-

eter, and pseudo-guessing parameter, respectively; qij is

the probability that examinee i answers question j incor-

rectly.

2.2 Parameter estimation

Using the maximum likelihood estimation (MLE)

method, the maximum likelihood estimates θ̂i and âj , b̂j ,

ĉj for parameters θi and aj , bj , cj can be obtained by max-

imizing the likelihood function,

L =
n∏

i=1

m∏

j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj is considered, such

the model is called the Rasch model. Usually, the two-

parameter model (cj = 0) is the standard, and we will

deal with this case below. Also, in terms of recommender

systems, we will refer to examinees as users and questions

as items.

If we denote parameters θi and aj , bj , cj together by Θ,

and the observed matrix by∆ = (δij), then the estimation

process is expressed as follows.

∆ ❀ Θ̂. (3)

2.3 Estimated item response matrix

Applying the delta method to pij in equation (1) as a
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function of Θ̂, we can obtain δ̂ij which is a continuous

value in [0, 1]. This estimation process can be expressed

such that

Θ̂ ❀ ∆̂, (4)

and we call ∆̂ the estimated item response matrix. The

value δ̂ij is corresponding to the probability of correctly

answering the question using equation (1).

Considering such treatment, the δij value is extended

from a discrete value of 1/0 to a continuous value of [0, 1],

although δij takes values δij = 1 if the question is success-

fully answered and δij = 0 if it is not. We also deal with

the null value of the element (i, j), corresponding to the

case where the examinee i has not tackle problem j, or

the case that the response is unknown. How to deal with

such cases is explained in [9], [16], [17].

Once, estimates âj and b̂j for aj and bj are obtained,

we can perform estimation procedure for θi to each i in-

dependently. If there is a sequence of random variables

Xl satisfying
√
l[Xl − θi]

d−→N (0,σ2
i ), (5)

where θi and σ2
i are finite valued constants, N is a normal

distribution, and
d−→ denotes convergence in distribution,

then
√
l[g(Xl)− g(θi)]

d−→N (0,σ2
i · [g′(θi)]2), (6)

for any function g satisfying the property that g′(θ) exists

and is non-zero valued. According to this, and regarding

g as pij in equation (1), δ̂ij becomes optimal in the likeli-

hood sense. Therefore, ∆̂ is optimal in the mathematical

model assuming equation (1) and the parameter space of

Θ.

3. Singular value decomposition

3.1 Singular value decomposition procedure

Assuming that A = (aij) is a m×n matrix. Then, ATA

becomes a n × n symmetric matrix, and AAT becomes a

m × m symmetric matrix, where AT denotes the trans-

pose of A. Eigen values and eigen vectors to these two

matrices ATA and AAT are the same if they exist. We

denote the eigen values and eigen vectors to matrix ATA

as {ξ1, ξ2, · · · , ξn} and {v1,v2, · · · ,vn}. That is,

ATAvi = ξivi. (7)

Eigen values can be reordered such that ξ1 ≥ ξ2 ≥ · · · ≥
ξr > 0, ξr+1 = · · · = ξn = 0, where r is the rank of ATA.

Since ATA is symmetric, eigen vectors can be made as or-

thonormal system. That is, vi · vj = Iij , where Iij is the

indicator function; i.e., Iii = 1, and Iij = 0 (i ̸= j).

We make vector ui by ui = Avi/σi, (i ≥ r), where

σi =
√
ξi. In addition, if we produce matrices U = (ui)

and V = (vj), then A can be expressed as A = UΣV T,

or equivalently, A =
∑r

l=1 σlulvT
l . Here, Σ is a diagonal

matrix using σi. This is the typical singular value decom-

position (SVD) (see [5], [18], [19]).

3.2 Generating the low-rank matrix

We define Ak such that

Ak =
k∑

l=1

σlulv
T
l , (8)

using the first k columns in the matrices of U and V .

This procedure generates the low-rank matrix Ak for A as

shown below.

It is interesting to remind the following theorem ([3]).

Theorem1 (Eckart-Young)

1) rank(Ak) = k

2) For any m× n matrix B, (rank(B) ≤ k),

||A−Ak||F = min
B,rank(B)≤k

||A−B||F = (
n∑

l=k+1

σ2
l )

1/2,

where || · ||F means the Frobenius matrix norm, i.e.,

||(aij)||F = (
∑

i,j |aij |2)1/2.
The theorem claims that Ak is best approximated to A

among all the matrices with rank of less than k+1 in the

sense of matrix norm.

3.3 Construction of the low-rank item response

matrix

When we regard A as the observed item response ma-

trix ∆, and we regard Ak as ∆k, we can construct the

low-rank item response matrix ∆k from ∆. When it is

desired to emphasize that ∆k is derived from SVD, it is

denoted as ∆SVD
k if necessary.

4. Matrix decomposition

4.1 Matrix decomposition procedure

SVD is a promising method to find an approximate ma-

trix that is close to a certain matrix in the sense of the ma-

trix norm. However, it requires that all the elements must

be occupied. Occasionally, one encounters cases where not

all elements of the observed response matrix are occupied.

In such cases, the matrix decomposition (MD) method

([12]) can be used; other methods, such as the imputation

method ([22]) or the matrix completion method ([7]) are

also used.

MD is similar to SVD. The target matrix R ∈ Rm×n

can be constructed from two matrices U ∈ Rm×k and
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function of Θ̂, we can obtain δ̂ij which is a continuous

value in [0, 1]. This estimation process can be expressed

such that

Θ̂ ❀ ∆̂, (4)

and we call ∆̂ the estimated item response matrix. The

value δ̂ij is corresponding to the probability of correctly

answering the question using equation (1).

Considering such treatment, the δij value is extended

from a discrete value of 1/0 to a continuous value of [0, 1],

although δij takes values δij = 1 if the question is success-

fully answered and δij = 0 if it is not. We also deal with

the null value of the element (i, j), corresponding to the

case where the examinee i has not tackle problem j, or

the case that the response is unknown. How to deal with

such cases is explained in [9], [16], [17].

Once, estimates âj and b̂j for aj and bj are obtained,

we can perform estimation procedure for θi to each i in-

dependently. If there is a sequence of random variables

Xl satisfying
√
l[Xl − θi]

d−→N (0,σ2
i ), (5)

where θi and σ2
i are finite valued constants, N is a normal

distribution, and
d−→ denotes convergence in distribution,

then
√
l[g(Xl)− g(θi)]

d−→N (0,σ2
i · [g′(θi)]2), (6)

for any function g satisfying the property that g′(θ) exists

and is non-zero valued. According to this, and regarding

g as pij in equation (1), δ̂ij becomes optimal in the likeli-

hood sense. Therefore, ∆̂ is optimal in the mathematical

model assuming equation (1) and the parameter space of

Θ.

3. Singular value decomposition

3.1 Singular value decomposition procedure

Assuming that A = (aij) is a m×n matrix. Then, ATA

becomes a n × n symmetric matrix, and AAT becomes a

m × m symmetric matrix, where AT denotes the trans-

pose of A. Eigen values and eigen vectors to these two

matrices ATA and AAT are the same if they exist. We

denote the eigen values and eigen vectors to matrix ATA

as {ξ1, ξ2, · · · , ξn} and {v1,v2, · · · ,vn}. That is,

ATAvi = ξivi. (7)

Eigen values can be reordered such that ξ1 ≥ ξ2 ≥ · · · ≥
ξr > 0, ξr+1 = · · · = ξn = 0, where r is the rank of ATA.

Since ATA is symmetric, eigen vectors can be made as or-

thonormal system. That is, vi · vj = Iij , where Iij is the

indicator function; i.e., Iii = 1, and Iij = 0 (i ̸= j).

We make vector ui by ui = Avi/σi, (i ≥ r), where

σi =
√
ξi. In addition, if we produce matrices U = (ui)

and V = (vj), then A can be expressed as A = UΣV T,

or equivalently, A =
∑r

l=1 σlulvT
l . Here, Σ is a diagonal

matrix using σi. This is the typical singular value decom-

position (SVD) (see [5], [18], [19]).

3.2 Generating the low-rank matrix

We define Ak such that

Ak =
k∑

l=1

σlulv
T
l , (8)

using the first k columns in the matrices of U and V .

This procedure generates the low-rank matrix Ak for A as

shown below.

It is interesting to remind the following theorem ([3]).

Theorem1 (Eckart-Young)

1) rank(Ak) = k

2) For any m× n matrix B, (rank(B) ≤ k),

||A−Ak||F = min
B,rank(B)≤k

||A−B||F = (
n∑

l=k+1

σ2
l )

1/2,

where || · ||F means the Frobenius matrix norm, i.e.,

||(aij)||F = (
∑

i,j |aij |2)1/2.
The theorem claims that Ak is best approximated to A

among all the matrices with rank of less than k+1 in the

sense of matrix norm.

3.3 Construction of the low-rank item response

matrix

When we regard A as the observed item response ma-

trix ∆, and we regard Ak as ∆k, we can construct the

low-rank item response matrix ∆k from ∆. When it is

desired to emphasize that ∆k is derived from SVD, it is

denoted as ∆SVD
k if necessary.

4. Matrix decomposition

4.1 Matrix decomposition procedure

SVD is a promising method to find an approximate ma-

trix that is close to a certain matrix in the sense of the ma-

trix norm. However, it requires that all the elements must

be occupied. Occasionally, one encounters cases where not

all elements of the observed response matrix are occupied.

In such cases, the matrix decomposition (MD) method

([12]) can be used; other methods, such as the imputation

method ([22]) or the matrix completion method ([7]) are

also used.

MD is similar to SVD. The target matrix R ∈ Rm×n

can be constructed from two matrices U ∈ Rm×k and
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and the likelihood function. Hence, we investigate how accurate ∆̂ is from MD

perspective and from SVD perspective.

Applying the methods explained in sections 3 and 4, we can compute the low-

rank item response matrices∆SVD
k and∆MD

k . Table 1 shows the RMSE(∆SVD
k ,∆)

and RMSE(∆MD
k ,∆) in the cases of k = 1, . . . , 5, 10, 20, 31 as well as the RMSE(∆̂,∆)

corresponding to IRT estimation.

Looking at the table, we can see, firstly, that the performance of SVD and

that of MD are almost the same. That is, MD is well catching up SVD. This

means that when we cannot directly use SVD, we may apply MD as an alter-

native method. Such a case may occur in the case of incomplete matrix; in

particular, so it may when the matrix is sparse.

Secondary, we see that the RMSE(∆̂,∆) obtained from IRT is located be-

tween the RMSE(∆SVD
1 ,∆) and RMSE(∆SVD

2 ,∆) in both the cases of SVD

and MD. This is amazing in a sense of matrix approximation. The estimated

response matrix ∆̂ using IRT would not exceed the accuracy (reliability) ob-

tained from the low-rank response matrix of k = 2 generated from the observed

item response ∆. Considering that the rank of observed matrix ∆ is 31 in this

example, this vale (k = 2) seems to be very small. In other words, The repro-

duction capability of the item response matrix seems to be poor in IRT. Figure

2 on the right shows ∆SVD
2 . This is very similar to the figure on the left (∆̂).

However, this is only one case result. It would be necessary to collect other

examination cases and to check if such a feature holds to other cases.

5.4. 42 examination cases

To make sure that the above mentioned feature holds or not in other ex-

amination cases, we have collected 42 examination cases. Table 2 shows the

subjects and matrix sizes of 42 examination cases. All the examinations were

taken in a university, and the examinees are undergraduate students.

Figure 3 shows the RMSE(∆̂,∆) in 42 examination cases. In the figure,

for ease of understanding, case id (shown in abscissa) is ordered in ascend-

ing order of the magnitude of RMSE(∆̂,∆) (shown in ordinate). In addition,
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5.3 Low-rank item response matrix

As described above, the estimated matrix ∆̂ by IRT

does not seem to accurately reproduce the observed re-

sponse matrix, although each estimate δ̂ij becomes opti-

mal in the likelihood sense under the defined parameter

space and likelihood function. Therefore, we investigate

how accurate ∆̂ is in terms of MD and SVD.

Applying the methods described in sections 3 and 4,

the low-rank item response matrices ∆SVD
k and ∆MD

k can

be computed. Table 1 shows the RMSE (∆SVD
k ,∆) and

RMSE(∆MD
k ,∆) in the cases of k = 1, . . . , 5, 10, 20, 31.

The table also shows the RMSE(∆̂,∆) corresponding to

IRT estimation.

The table shows, first, that the performance of SVD and

MD are almost the same. In other words, MD catches up

well with SVD. This means that MD can be applied as an

alternative method when SVD cannot be used directly.

Such a case may occur in the case of incomplete matrix,

especially when the matrices are sparse.

Next, we see that the RMSE(∆̂,∆) obtained by IRT lies

between the RMSE (∆1,∆) and RMSE(∆2,∆) in both

the SVD and MD cases. This is amazing in terms of ma-

trix approximation. The estimated response matrix ∆̂

using IRT would not exceed the accuracy obtained from

a k = 2 low-rank response matrix generated from the

observed item response ∆. In this example, this value

(k = 2) would be very small given that the rank of ob-

served matrix ∆ is 31. In other words, the reproducibility

of the observed item response matrix appears to be low

for IRT.

Such properties can also be seen in the pictures of the

low-rank response matrices. The figure on the left in Fig-

ure 2 shows ∆SVD
2 and that on the right ∆MD

2 . These are

very similar to ∆̂ in Figure 1.

ද 1 RMSE of the difference of the two matrices between the

low-rank response matrix and the observed response ma-

trix
k RMSE(∆SVD

k ,∆) RMSE(∆MD
k ,∆) RMSE(∆̂,∆)

0.3915

1 0.4066 0.4067

2 0.3851 0.3854

3 0.3652 0.3656

4 0.3479 0.3485

5 0.3306 0.3314

10 0.2562 0.2583

20 0.1325 0.1400

31 0 0.0570

However, this is only the result of one case study. It

ਤ 2 Low-rank matrices ∆SVD
2 and ∆MD

2 reproduced from the

oserved item response matrix.

would be necessary to collect other examination cases to

see if these properties hold true in other cases.

5.4 42 examination cases

To make sure that the above mentioned properties hold

true for other examination cases, 42 examination cases

were collected, including case A. For all examinations, an-

swers were given as discrete values of 1/0 (1 for correct

answers and 0 for incorrect answers).

Figure 3 shows the RMSE(∆̂,∆) for the 42 examina-

tion cases. In the figure, the case id shown on the hor-

izontal axis are arranged in ascending order of the mag-

nitude of the RMSE(∆̂,∆) shown on the vertical axis for

easy understanding. Also shown are the RMSE(∆SVD
k ,∆)

(k = 1, 2, 3) for each case id. Looking at the figure, we

see that RMSE(∆SVD
2 ,∆) < RMSE(∆̂,∆) is obtained in

all cases. This suggests that the effectiveness of IRT is

similar to that of a very low-rank approximation matrix.

ਤ 3 RMSE(∆̂,∆) and RMSE(∆SVD
k ,∆) (k = 1, 2, 3) for 42

complete matrix using full element data.

However, this is the result when all the element data of

∆ are used, i.e., when the estimation is performed with

training data only. In this case, the estimated values δ̂ij

may be overfitting values. In order to clarify whether

the estimates obtained with IRT are really inaccurate, we
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served matrix ∆ is 31. In other words, the reproducibility

of the observed item response matrix appears to be low

for IRT.

Such properties can also be seen in the pictures of the

low-rank response matrices. The figure on the left in Fig-

ure 2 shows ∆SVD
2 and that on the right ∆MD

2 . These are

very similar to ∆̂ in Figure 1.

ද 1 RMSE of the difference of the two matrices between the

low-rank response matrix and the observed response ma-

trix
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However, this is only the result of one case study. It

ਤ 2 Low-rank matrices ∆SVD
2 and ∆MD

2 reproduced from the

oserved item response matrix.

would be necessary to collect other examination cases to

see if these properties hold true in other cases.

5.4 42 examination cases

To make sure that the above mentioned properties hold

true for other examination cases, 42 examination cases

were collected, including case A. For all examinations, an-

swers were given as discrete values of 1/0 (1 for correct

answers and 0 for incorrect answers).

Figure 3 shows the RMSE(∆̂,∆) for the 42 examina-

tion cases. In the figure, the case id shown on the hor-

izontal axis are arranged in ascending order of the mag-

nitude of the RMSE(∆̂,∆) shown on the vertical axis for

easy understanding. Also shown are the RMSE(∆SVD
k ,∆)

(k = 1, 2, 3) for each case id. Looking at the figure, we

see that RMSE(∆SVD
2 ,∆) < RMSE(∆̂,∆) is obtained in

all cases. This suggests that the effectiveness of IRT is

similar to that of a very low-rank approximation matrix.

ਤ 3 RMSE(∆̂,∆) and RMSE(∆SVD
k ,∆) (k = 1, 2, 3) for 42

complete matrix using full element data.

However, this is the result when all the element data of

∆ are used, i.e., when the estimation is performed with

training data only. In this case, the estimated values δ̂ij

may be overfitting values. In order to clarify whether

the estimates obtained with IRT are really inaccurate, we

c⃝ 1959 Information Processing Society of Japan 5

ใॲཧֶձڀݚใࠂ
IPSJ SIG Technical Report

5.3 Low-rank item response matrix

As described above, the estimated matrix ∆̂ by IRT

does not seem to accurately reproduce the observed re-

sponse matrix, although each estimate δ̂ij becomes opti-

mal in the likelihood sense under the defined parameter

space and likelihood function. Therefore, we investigate

how accurate ∆̂ is in terms of MD and SVD.

Applying the methods described in sections 3 and 4,

the low-rank item response matrices ∆SVD
k and ∆MD

k can

be computed. Table 1 shows the RMSE (∆SVD
k ,∆) and

RMSE(∆MD
k ,∆) in the cases of k = 1, . . . , 5, 10, 20, 31.

The table also shows the RMSE(∆̂,∆) corresponding to

IRT estimation.

The table shows, first, that the performance of SVD and

MD are almost the same. In other words, MD catches up

well with SVD. This means that MD can be applied as an

alternative method when SVD cannot be used directly.

Such a case may occur in the case of incomplete matrix,

especially when the matrices are sparse.

Next, we see that the RMSE(∆̂,∆) obtained by IRT lies

between the RMSE (∆1,∆) and RMSE(∆2,∆) in both

the SVD and MD cases. This is amazing in terms of ma-

trix approximation. The estimated response matrix ∆̂

using IRT would not exceed the accuracy obtained from

a k = 2 low-rank response matrix generated from the

observed item response ∆. In this example, this value

(k = 2) would be very small given that the rank of ob-

served matrix ∆ is 31. In other words, the reproducibility

of the observed item response matrix appears to be low

for IRT.

Such properties can also be seen in the pictures of the

low-rank response matrices. The figure on the left in Fig-

ure 2 shows ∆SVD
2 and that on the right ∆MD

2 . These are

very similar to ∆̂ in Figure 1.

ද 1 RMSE of the difference of the two matrices between the

low-rank response matrix and the observed response ma-

trix
k RMSE(∆SVD

k ,∆) RMSE(∆MD
k ,∆) RMSE(∆̂,∆)

0.3915

1 0.4066 0.4067

2 0.3851 0.3854

3 0.3652 0.3656

4 0.3479 0.3485

5 0.3306 0.3314

10 0.2562 0.2583

20 0.1325 0.1400

31 0 0.0570

However, this is only the result of one case study. It

ਤ 2 Low-rank matrices ∆SVD
2 and ∆MD

2 reproduced from the

oserved item response matrix.

would be necessary to collect other examination cases to

see if these properties hold true in other cases.

5.4 42 examination cases

To make sure that the above mentioned properties hold

true for other examination cases, 42 examination cases

were collected, including case A. For all examinations, an-

swers were given as discrete values of 1/0 (1 for correct

answers and 0 for incorrect answers).

Figure 3 shows the RMSE(∆̂,∆) for the 42 examina-

tion cases. In the figure, the case id shown on the hor-

izontal axis are arranged in ascending order of the mag-

nitude of the RMSE(∆̂,∆) shown on the vertical axis for

easy understanding. Also shown are the RMSE(∆SVD
k ,∆)

(k = 1, 2, 3) for each case id. Looking at the figure, we

see that RMSE(∆SVD
2 ,∆) < RMSE(∆̂,∆) is obtained in

all cases. This suggests that the effectiveness of IRT is

similar to that of a very low-rank approximation matrix.

ਤ 3 RMSE(∆̂,∆) and RMSE(∆SVD
k ,∆) (k = 1, 2, 3) for 42

complete matrix using full element data.

However, this is the result when all the element data of

∆ are used, i.e., when the estimation is performed with

training data only. In this case, the estimated values δ̂ij

may be overfitting values. In order to clarify whether

the estimates obtained with IRT are really inaccurate, we

c⃝ 1959 Information Processing Society of Japan 5

ใॲཧֶձڀݚใࠂ
IPSJ SIG Technical Report

5.3 Low-rank item response matrix

As described above, the estimated matrix ∆̂ by IRT

does not seem to accurately reproduce the observed re-

sponse matrix, although each estimate δ̂ij becomes opti-

mal in the likelihood sense under the defined parameter

space and likelihood function. Therefore, we investigate

how accurate ∆̂ is in terms of MD and SVD.

Applying the methods described in sections 3 and 4,

the low-rank item response matrices ∆SVD
k and ∆MD

k can

be computed. Table 1 shows the RMSE (∆SVD
k ,∆) and

RMSE(∆MD
k ,∆) in the cases of k = 1, . . . , 5, 10, 20, 31.

The table also shows the RMSE(∆̂,∆) corresponding to

IRT estimation.

The table shows, first, that the performance of SVD and

MD are almost the same. In other words, MD catches up

well with SVD. This means that MD can be applied as an

alternative method when SVD cannot be used directly.

Such a case may occur in the case of incomplete matrix,

especially when the matrices are sparse.

Next, we see that the RMSE(∆̂,∆) obtained by IRT lies

between the RMSE (∆1,∆) and RMSE(∆2,∆) in both

the SVD and MD cases. This is amazing in terms of ma-

trix approximation. The estimated response matrix ∆̂

using IRT would not exceed the accuracy obtained from

a k = 2 low-rank response matrix generated from the

observed item response ∆. In this example, this value

(k = 2) would be very small given that the rank of ob-

served matrix ∆ is 31. In other words, the reproducibility

of the observed item response matrix appears to be low

for IRT.

Such properties can also be seen in the pictures of the

low-rank response matrices. The figure on the left in Fig-

ure 2 shows ∆SVD
2 and that on the right ∆MD

2 . These are

very similar to ∆̂ in Figure 1.

ද 1 RMSE of the difference of the two matrices between the

low-rank response matrix and the observed response ma-

trix
k RMSE(∆SVD

k ,∆) RMSE(∆MD
k ,∆) RMSE(∆̂,∆)

0.3915

1 0.4066 0.4067

2 0.3851 0.3854

3 0.3652 0.3656

4 0.3479 0.3485

5 0.3306 0.3314

10 0.2562 0.2583

20 0.1325 0.1400

31 0 0.0570

However, this is only the result of one case study. It

ਤ 2 Low-rank matrices ∆SVD
2 and ∆MD

2 reproduced from the

oserved item response matrix.

would be necessary to collect other examination cases to

see if these properties hold true in other cases.

5.4 42 examination cases

To make sure that the above mentioned properties hold

true for other examination cases, 42 examination cases

were collected, including case A. For all examinations, an-

swers were given as discrete values of 1/0 (1 for correct

answers and 0 for incorrect answers).

Figure 3 shows the RMSE(∆̂,∆) for the 42 examina-

tion cases. In the figure, the case id shown on the hor-

izontal axis are arranged in ascending order of the mag-

nitude of the RMSE(∆̂,∆) shown on the vertical axis for

easy understanding. Also shown are the RMSE(∆SVD
k ,∆)

(k = 1, 2, 3) for each case id. Looking at the figure, we

see that RMSE(∆SVD
2 ,∆) < RMSE(∆̂,∆) is obtained in

all cases. This suggests that the effectiveness of IRT is

similar to that of a very low-rank approximation matrix.

ਤ 3 RMSE(∆̂,∆) and RMSE(∆SVD
k ,∆) (k = 1, 2, 3) for 42

complete matrix using full element data.

However, this is the result when all the element data of

∆ are used, i.e., when the estimation is performed with

training data only. In this case, the estimated values δ̂ij

may be overfitting values. In order to clarify whether

the estimates obtained with IRT are really inaccurate, we

c⃝ 1959 Information Processing Society of Japan 5

ใॲཧֶձڀݚใࠂ
IPSJ SIG Technical Report

5.3 Low-rank item response matrix

As described above, the estimated matrix ∆̂ by IRT

does not seem to accurately reproduce the observed re-

sponse matrix, although each estimate δ̂ij becomes opti-

mal in the likelihood sense under the defined parameter

space and likelihood function. Therefore, we investigate

how accurate ∆̂ is in terms of MD and SVD.

Applying the methods described in sections 3 and 4,

the low-rank item response matrices ∆SVD
k and ∆MD

k can

be computed. Table 1 shows the RMSE (∆SVD
k ,∆) and

RMSE(∆MD
k ,∆) in the cases of k = 1, . . . , 5, 10, 20, 31.

The table also shows the RMSE(∆̂,∆) corresponding to

IRT estimation.

The table shows, first, that the performance of SVD and

MD are almost the same. In other words, MD catches up

well with SVD. This means that MD can be applied as an

alternative method when SVD cannot be used directly.

Such a case may occur in the case of incomplete matrix,

especially when the matrices are sparse.

Next, we see that the RMSE(∆̂,∆) obtained by IRT lies

between the RMSE (∆1,∆) and RMSE(∆2,∆) in both

the SVD and MD cases. This is amazing in terms of ma-

trix approximation. The estimated response matrix ∆̂

using IRT would not exceed the accuracy obtained from

a k = 2 low-rank response matrix generated from the

observed item response ∆. In this example, this value

(k = 2) would be very small given that the rank of ob-

served matrix ∆ is 31. In other words, the reproducibility

of the observed item response matrix appears to be low

for IRT.

Such properties can also be seen in the pictures of the

low-rank response matrices. The figure on the left in Fig-

ure 2 shows ∆SVD
2 and that on the right ∆MD

2 . These are

very similar to ∆̂ in Figure 1.

ද 1 RMSE of the difference of the two matrices between the

low-rank response matrix and the observed response ma-

trix
k RMSE(∆SVD

k ,∆) RMSE(∆MD
k ,∆) RMSE(∆̂,∆)

0.3915

1 0.4066 0.4067

2 0.3851 0.3854

3 0.3652 0.3656

4 0.3479 0.3485

5 0.3306 0.3314

10 0.2562 0.2583

20 0.1325 0.1400

31 0 0.0570

However, this is only the result of one case study. It

ਤ 2 Low-rank matrices ∆SVD
2 and ∆MD

2 reproduced from the

oserved item response matrix.

would be necessary to collect other examination cases to

see if these properties hold true in other cases.

5.4 42 examination cases

To make sure that the above mentioned properties hold

true for other examination cases, 42 examination cases

were collected, including case A. For all examinations, an-

swers were given as discrete values of 1/0 (1 for correct

answers and 0 for incorrect answers).

Figure 3 shows the RMSE(∆̂,∆) for the 42 examina-

tion cases. In the figure, the case id shown on the hor-

izontal axis are arranged in ascending order of the mag-

nitude of the RMSE(∆̂,∆) shown on the vertical axis for

easy understanding. Also shown are the RMSE(∆SVD
k ,∆)

(k = 1, 2, 3) for each case id. Looking at the figure, we

see that RMSE(∆SVD
2 ,∆) < RMSE(∆̂,∆) is obtained in

all cases. This suggests that the effectiveness of IRT is

similar to that of a very low-rank approximation matrix.

ਤ 3 RMSE(∆̂,∆) and RMSE(∆SVD
k ,∆) (k = 1, 2, 3) for 42

complete matrix using full element data.

However, this is the result when all the element data of

∆ are used, i.e., when the estimation is performed with

training data only. In this case, the estimated values δ̂ij

may be overfitting values. In order to clarify whether

the estimates obtained with IRT are really inaccurate, we

c⃝ 1959 Information Processing Society of Japan 5

ใॲཧֶձڀݚใࠂ
IPSJ SIG Technical Report

5.3 Low-rank item response matrix

As described above, the estimated matrix ∆̂ by IRT

does not seem to accurately reproduce the observed re-

sponse matrix, although each estimate δ̂ij becomes opti-

mal in the likelihood sense under the defined parameter

space and likelihood function. Therefore, we investigate

how accurate ∆̂ is in terms of MD and SVD.

Applying the methods described in sections 3 and 4,

the low-rank item response matrices ∆SVD
k and ∆MD

k can

be computed. Table 1 shows the RMSE (∆SVD
k ,∆) and

RMSE(∆MD
k ,∆) in the cases of k = 1, . . . , 5, 10, 20, 31.

The table also shows the RMSE(∆̂,∆) corresponding to

IRT estimation.

The table shows, first, that the performance of SVD and

MD are almost the same. In other words, MD catches up

well with SVD. This means that MD can be applied as an

alternative method when SVD cannot be used directly.

Such a case may occur in the case of incomplete matrix,

especially when the matrices are sparse.

Next, we see that the RMSE(∆̂,∆) obtained by IRT lies

between the RMSE (∆1,∆) and RMSE(∆2,∆) in both

the SVD and MD cases. This is amazing in terms of ma-

trix approximation. The estimated response matrix ∆̂

using IRT would not exceed the accuracy obtained from

a k = 2 low-rank response matrix generated from the

observed item response ∆. In this example, this value

(k = 2) would be very small given that the rank of ob-

served matrix ∆ is 31. In other words, the reproducibility

of the observed item response matrix appears to be low

for IRT.

Such properties can also be seen in the pictures of the

low-rank response matrices. The figure on the left in Fig-

ure 2 shows ∆SVD
2 and that on the right ∆MD

2 . These are

very similar to ∆̂ in Figure 1.

ද 1 RMSE of the difference of the two matrices between the

low-rank response matrix and the observed response ma-

trix
k RMSE(∆SVD

k ,∆) RMSE(∆MD
k ,∆) RMSE(∆̂,∆)

0.3915

1 0.4066 0.4067

2 0.3851 0.3854

3 0.3652 0.3656

4 0.3479 0.3485

5 0.3306 0.3314

10 0.2562 0.2583

20 0.1325 0.1400

31 0 0.0570

However, this is only the result of one case study. It

ਤ 2 Low-rank matrices ∆SVD
2 and ∆MD

2 reproduced from the

oserved item response matrix.

would be necessary to collect other examination cases to

see if these properties hold true in other cases.

5.4 42 examination cases

To make sure that the above mentioned properties hold

true for other examination cases, 42 examination cases

were collected, including case A. For all examinations, an-

swers were given as discrete values of 1/0 (1 for correct

answers and 0 for incorrect answers).

Figure 3 shows the RMSE(∆̂,∆) for the 42 examina-
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complete matrix using full element data.

However, this is the result when all the element data of

∆ are used, i.e., when the estimation is performed with

training data only. In this case, the estimated values δ̂ij

may be overfitting values. In order to clarify whether
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of questions m is 31. There are no missing data in this matrix. We name this

case as example A.

Figure 1 on the left shows the observed item response matrix; on the right, a

partially extracted part from the matrix is seen for ease of viewing. The matrix

consists of two-valued elements: 1 for correctly answered, and 0 for incorrectly

answered. We denote the observed item response matrix as ∆ = (δij).

Figure 1: Observed item response matrix.

5.2. Estimated item response matrix by using IRT

Applying the maximum likelihood estimation method to this observed item

response matrix ∆, the maximum likelihood estimates Θ̂ for parameter Θ are

obtained. Using the estimates Θ̂, we can reconstruct the estimated item re-

sponse matrix ∆̂. As explained before, this ∆̂ is optimal in a sense of likelihood

principle. Figure 2 on the left shows this ∆̂. Comparing ∆̂ with ∆ in Figure 1,

8

19

k = 1 k = 2
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IRT
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Ϋε ∆Λਖ਼֬ʹ͍ͯ͠ݱ࠶ΔΑ͏ʹ͑ݟͳ͍ɽͦ͜Ͱɼ

͜͜Ͱɼ∆͕̂ SVDʹΑͬͯੜ͞ΕΔϥϯΫϚτϦ

Ϋε ∆k ͷͲͷϥϯΫͷϚτϦΫεʹ࠷͍͔ۙΛϚτϦ

ΫεϊϧϜͷҙຯͰௐͯɼͦΕΛਪఆԠϚτϦΫε ∆̂

ͷ؍ଌԠϚτϦΫε∆ͷۙࣅͱͯ͠ఆٛ͢Δɽ

ද 1ʹɼk = 1, . . . , 5, 10, 20, 31ͷͱ͖ͷ RMSE(∆k,∆)

ͷΛࣔ͢ɽදʹɼRMSE(∆̂,∆)ͷซ͍ͯ͠هΔɽද

͔ΒɼRMSE(∆̂,∆)ɼRMSE(∆1,∆)ͱRMSE(∆2,∆)ͷ

ؒʹҐஔ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ∆ͷϥϯΫ 31Ͱ͋

Δʹ͔͔ΘΒͣɼਪఆԠϚτϦΫε ∆̂Θ͔ͣϥϯΫ

 2ఔͷϥϯΫϚτϦΫε ∆2 ΑΓ؍ଌԠϚτϦ

Ϋε∆ͷۙࣅ͕ѱ͍ɽͭ·ΓɼIRTਪఆԠϚτϦΫ

εͷ؍ଌԠϚτϦΫεͷݱ࠶͘ߴͳͦ͞͏ͩͱ

͍͏͜ͱ͕֬ೝͰ͖Δɽ͜ͷ͜ͱɼIRTϞσϧԼͰͷ࠷

ਪఆྔ͔Β࡞ΒΕΔԠϚτϦΫεྑ࠷Ͱ͋Δͱ͍͏

͔Βিܸతͳ݁ՌͰ͋Δɽ؍

ਤ 2ʹɼk = 2ͱ k = 10ͷͱ͖ͷ SVD͔Β࡞ΒΕΔϥ

ϯΫϚτϦΫεΛࣔ͢ɽk = 2ͷͱ͖ͷϥϯΫϚτϦΫε

∆2ਤ 1ͷਪఆԠϚτϦΫε ∆̂ͱΑ͓ͯ͘ࣅΓɼk = 5

ͷͱ͖ͷϥϯΫϚτϦΫε∆10 ਤ 1ͷ؍ଌԠϚτϦ

Ϋε∆ΛΑΓ͍ۙͯ͠ࣅΔ͜ͱ͕Θ͔Δɽ

ද 1: ଌԠϚτϦΫε؍ ∆ͱϥϯΫϚτϦΫε ∆k ͷ

ࠩͷ RMSE[9]

k RMSE(∆k,∆) RMSE(∆̂,∆)

0.3915
1 0.4066
2 0.3851
3 0.3652
4 0.3479
5 0.3306
10 0.2562
20 0.1325
31 0

ਤ 2: ϥϯΫԠϚτϦΫε∆2 ͱ∆10

͔͠͠ͳ͕Βɼ͜Εɼ͋Δେֶͷઢܗͷςετʹ

CBTΛ༻͍ͨ݁ՌͷҰྫͰ͋Γɼ্ʹड़ͨΑ͏ͳੑ࣭͕

ଞͷ߹ʹΓཱ͔ͭͲ͏͔Θ͔Βͳ͍ɽͦ͜Ͱɼଞ

ͷ CBTͷ݁Ռʹ͍ͭͯಉ༷ͷ͜ͱΛௐͯΈΔ͜ͱʹ

ͨ͠ɽ

4.3 42έʔεͷCBTͷ݁Ռ

͜͜Ͱɼද 2ʹࣔ͢ 42έʔεͷՊͷ CBT݁ՌͰͷ

ଌԠϚτϦΫεʹ͍ͭͯɼਪఆԠϚτϦΫεͱϥϯ؍

ΫԠϚτϦΫεͷҧ͍ΛௐͯΈͨɽ42έʔεʹέʔ

ε Aؚ·Ε͍ͯΔɽडऀݧͷରେֶ 1-2ੜͰɼ

ͷՊɼ֬ɼ౷ֶܭɼৗඍํఔࣜɼඍੵɼઢ

低ランク近似マトリクスのランク数によるRMSEの違い

ランク数 SVD IRT

IRTの近似精度は 
ランクk=2以下の 

SVDの近似マトリクスの精度以下

20
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case A

応答マトリクスを再現すると 
k < 2 程度の低ランクマトリクス近似の精度しか得られない

項目反応理論から

Table 2: Subjects and matrix size in 42 examination cases

id subject n m id subject n m id subject n m

1 PS 44 14 15 C 45 42 29 C 1131 77

2 PS 41 19 16 LA 36 39 30 LA 1101 84

3 PS 34 17 17 LA 566 6 31 C 215 36

4 P 97 32 18 C 66 33 32 LA 47 39

5 S 57 15 19 S 97 12 33 C 209 36

6 S 75 14 20 C 76 30 34 C 868 6

7 C 40 19 21 LA 132 49 35 C 215 36

8 PS 44 15 22 LA 132 84 36 LA 585 84

9 PS 72 21 23 LA 177 49 37 LA 39 39

10 ODE 41 13 24 LA 142 45 38 C 209 31

11 ODE 49 25 25 LA 46 39 39 C 209 67

12 PS 54 21 26 LA 39 45 40 C 216 31

13 C 70 26 27 LA 181 45 41 LA 585 49

14 C 9 16 28 LA 229 84 42 C 145 34

PS: probability & statistics, P: probability, S: statistics, ODE: ordinary

di↵erential equations, C: calculus, LA: linear algebra

S = (s
ij

) and T = (t
ij

) are defined such that

� = S + T, s

ij

=

8
><

>:

�

ij

(!
ij

= 0)

0 (!
ij

= 1)
, t

ij

=

8
><

>:

0 (!
ij

= 0)

�

ij

(!
ij

= 1)
. (14)

S and T are actually complete matrices, but by incorporating this matrix ⌦,

they act as if they were incomplete matrices.

6.1. In the case of IRT

Usually, the element �
ij

takes values such that when the question is answered,

�

ij

= 1 for success and �

ij

= 0 for failure. However, we have been extended �

ij

13

42ケースのデータでも調べる

બࣜͰճ͞ΕࢶͳͲͰ͋Δɽͯ͢ͷଟܗ

ΔΑ͏ʹͳ͓ͬͯΓɼਖ਼ͳΒ 1ΛޡͳΒ 0Λ؍ଌԠ

ϚτϦΫεͷσʔλϕʔεʹฦ͢Α͏ʹͳ͍ͬͯΔɽ

ද 2: 42έʔεͷՊͱϚτϦΫεαΠζ [15]

id Պ n m id Պ n m

1 PS 44 14 22 LA 132 84
2 PS 41 19 23 LA 177 49
3 PS 34 17 24 LA 142 45
4 P 97 32 25 LA 46 39
5 S 57 15 26 LA 39 45
6 S 75 14 27 LA 181 45
7 C 40 19 28 LA 229 84
8 PS 44 15 29 C 1131 77
9 PS 72 21 30 LA 1101 84
10 ODE 41 13 31 C 215 36
11 ODE 49 25 32 LA 47 39
12 PS 54 21 33 C 209 36
13 C 70 26 34 C 868 6
14 C 9 16 35 C 215 36
15 C 45 42 36 LA 585 84
16 LA 36 39 37 LA 39 39
17 LA 566 6 38 C 209 31
18 C 66 33 39 C 209 67
19 S 97 12 40 C 216 31
20 C 76 30 41 LA 585 49
21 LA 132 49 42 C 145 34

PS: ֬ɾ౷ܭ, P: ֬, S: ౷ֶܭ,
ODE: ৗඍํఔࣜ, C: ඍੵ, LA: ઢܗ

ਤ3ʹɼ42έʔεͷRMSE(∆̂,∆)Λࣔ͢ɽਤ͔ΒΘ͔ΔΑ

͏ʹɼԣ࣠ͷ idॎ࣠ͷRMSE(∆̂,∆)͕ঢॱʹͳΔΑ͏ʹ

ॱং͚͞Ε͍ͯΔɽਤʹɼRMSE(∆2,∆)ซ͍ͯ͠ه

Δ͕ɼ͜ΕΛݟΔͱɼͯ͢ͷ idʹ͍ͭͯɼRMSE(∆2,∆)

< RMSE(∆̂,∆)ͱͳ͍ͬͯΔ͜ͱ͕֬ೝͰ͖Δɽͭ·Γɼ

IRTͷਪఆԠϚτϦΫε SVD͔Β࡞ΒΕΔϥϯΫ

ϚτϦΫεʢk = 2ʣΑΓ؍ଌԠϚτϦΫεΛۙͯ͠ࣅ

͍ͳ͍ͱ͍͏͜ͱɼ্ͷઢܗͷྫ͕ಛघͳྫͱ͍͏

͜ͱͰͳ͘ɼଞͷՊͷCBTͰී௨ʹݟΒΕΔݱͰ

͋Δͱ͍͏͜ͱΛද͍ͯ͠Δɽ

͔͠͠ͳ͕Βɼ͜ͷ݁Ռɼ∆ͷཁૉͯ͢Λ༻͍ͨͱ

͖ͷਪఆ݁ՌͰ͋Δɽػցֶशͷํ͍ݴΛ͢Εɼͯ͢

ͷσʔλΛτϨʔχϯάσʔλͱͯ͠༻͍ͨͱ͖ͷ݁ՌͰ

͋Γɼաֶशؚ͕·Ε͍ͯΔ͔͠Εͳ͍ɽ༧ଌͷ؍͔

Βɼ∆ͷཁૉΛτϨʔχϯάσʔλͱςετσʔλʹ

͚ͨॲཧ๏ͷͱͰɼςετσʔλΛ༻͍ͨ݁Ռ͕ͲͷΑ

͏ͳʹͳΔ͔͕ॏཁʹͳΔɽ

5 ςετσʔλΛ༻͍ͨ݁Ռ

ϚτϦΫε ∆ ͱಉ͡େ͖͞ͷϚτϦΫεΛτϨʔχϯ

άσʔλ S ͱςετσʔλ T ʹ͚Δɽςετσʔλ

ʹ ∆ ͷཁૉ͔ΒϥϯμϜʹ 10%ͷཁૉΛநग़͠ɼΓ

ͷ 90%ΛτϨʔχϯάσʔλͱ͢ΔɽτϨʔχϯάσʔ

ਤ 3: 42έʔεͷ RMSE(∆̂,∆)ͱ RMSE(∆2,∆)

λɼςετσʔλʹΑͬͯߏ࠶ஙʢߏ࠶ங๏ [15] ʹࣔ

͢ʣ͞ΕͨԠϚτϦΫεΛɼIRT ͰͷਪఆԠϚτϦ

Ϋεͷ߹ɼS̃ɼT̃ ͰɼSVD ͰͷϥϯΫ k ͷϥϯΫϚ

τϦΫεͷ߹ɼS̃kɼT̃k Ͱද͢ɽ͜ͷτϨʔχϯάσʔ

λɼςετσʔλΛϥϯμϜநग़͢Δૢ࡞Λ 10ճ܁Γฦ͠ɼ

ͦΕͧΕͷ RMSE(S̃, S)ɼRMSE(T̃ , T )ɼRMSE(S̃k, S)ɼ

RMSE(T̃k, T )ɼ͓ΑͼͦΕΒͷฏۉɼµ(RMSE(S̃, S))ɼ

µ(RMSE(T̃ , T ))ɼµ(RMSE(S̃k, S))ɼµ(RMSE(T̃k, T ))Λٻ

ΊΔɽ

5.1 έʔεAɿઢܗ

ਤ 4ʹɼઌͷέʔεAʢઢܗʣʹ͍ͭͯɼIRT͔Βٻ

ΊΒΕͨ RMSE(S̃, S)ͱ RMSE(T̃ , T )ɼ͓Αͼɼk = 1͔

Β k = 10ͷͱ͖ͷ SVD͔ΒٻΊΒΕͨ RMSE(S̃k, S)ͱ

RMSE(T̃k, T )Λࣔ͢ɽ

ਤΛݟΔͱɼτϨʔχϯάσʔλͰͷRMSEఆ͞Ε

Δͱ͓Γ k͕૿Ճ͢ΔʹͭΕͯ୯ௐʹݮগ͍͍ͯͬͯ͠Δɽ

·ͨɼRMSEͷΏΒ͗খ͘͞ɼͯ͢ RMSE(S̃1, S)ͱ

RMSE(S̃2, S)ͷؒʹ͋Δɽ͜ͷ͜ͱ∆ͷͯ͢ͷཁૉΛ

τϨʔχϯάσʔλͱͯ͠༻͍ͨͱ͖ͷੑ࣭ͱมΘΒͳ͍ɽ

ҰํɼςετσʔλͰͷRMSE(T̃k, T )ɼ͜Εఆ͞

ΕΔͱ͓Γɼk ͕খ͍͞ͱ͖ k ͷݮগؔʹɼେ͖͘ͳ

Δͱ૿ՃؔʹͳΔVۂઢ [16]Λඳ͍͍ͯΔɽϒʔτετ

ϥοϓʹΑΔͦΕͧΕͷRMSE(T̃k, T খʹͳΔͷ࠷ઢ͕ۂ(

ɼ3 ≤ k ≤ 5ͷͱ͖Ͱ͋ΔΑ͏ʹ͑ݟΔ͕໌ྎͰͳ͍ɽ

ͦ͜Ͱɼද 3ʹɼ10ճͷϒʔτετϥοϓ͔ΒಘΒΕͨ

RMSE(T̃k, T )ͷฏۉ µ(RMSE(T̃k, T ))Λ k = 1, . . . , 10ͷ

߹ʹ͍ͭͯࣔͯ͠ΈͨɽදʹɼIRT͔Β࡞ΒΕΔਪఆ

ԠϚτϦΫεͷςετσʔλʹ͓͚Δ µ(RMSE(T̃ , T ))ͷ

ซ͍ͯ͠هΔɽද͔Βɼµ(RMSE(T̃k, T খʹͳ࠷͕((

Δ kͷ k = 5Ͱ͋Δ͜ͱ͕Θ͔ΔɽදͰ͜ͷͱ͖ͷ

ΛଠࣈͰ͍ࣔͯ͠Δɽ

22

ケース A



42ケースすべてに対して成立している

応答マトリクスを再現すると 
k < 2 程度の低ランクマトリクス近似の精度しか得られない

項目反応理論から

23

それはトレーニングデータでの結果であって 
テストデータでもそういえるだろうか

24

応答マトリクスを再現すると 
k < 2 程度の低ランクマトリクス近似の精度しか得られない

項目反応理論から



予測誤差を調べるため

training data で予測モデルを作り 
test data で予測誤差を調べてみる

25

correct

incorrect

null
test data

training data

10% randomly selected

問
題
1

問
題
2

問
題
3

問
題 
31

学生1
学生2
学生3

学生28

テストデータでもそうだった

ただし、case Aのとき

応答マトリクスを再現すると 
k < 2 程度の低ランクマトリクス近似の精度しか得られない

項目反応理論から

26



42ケースから8ケースを選んで調べる

27
Table 4: Mean values of 10 bootstrapped RMSE for the test data to 8 data cases

case id µ(RMSE(T̃ SVD
k opt

, T )) k opt µ(RMSE(T̃ , T )) case name

5 0.2935 1 0.2908

10 0.3547 1 0.3591

15 0.3457 1 0.3344

20 0.3801 1 0.3726

25 0.3701 5 0.3789

30 0.3442 16 0.3771 case B

35 0.3982 2 0.3964

40 0.4053 3 0.4068 case A

data use study. Although the rank of the low-rank approximation response ma-

trix by matrix decomposition corresponding to �̂ is extremely smaller than the

rank of the observed response matrix �, the predictive ability of IRT seems to

be high enough since the RMSE(T̃ SVD
k opt

, T ) is almost equal to µ(RMSE(T̃ , T )).

In other words, if the size of the item response matrix is moderate, i.e., less

than 1000 users and less than 100 items, it would be di�cult to obtain more

information than IRT produces from the observed item response matrix alone

using the matrix decomposition method.

8. Concluding Remarks

This paper investigated the reliability of item response theory itself from

matrix decomposition perspective.

The maximum likelihood estimates for the parameters in item response the-

ory are obtained by the observed item response matrix. Using the estimates,

the estimated item response matrix can be reconstructed, and how close the

observed and estimated matrices are can be measured by using the root mean

squared error. Matrix decomposition and singular value decomposition methods

can generate a low-rank approximation matrix from the observed item response

20

8ケース

28

最適なkのときの 
低ランク 

近似マトリクスで



Table 4: Mean values of 10 bootstrapped RMSE for the test data to 8 data cases

case id µ(RMSE(T̃ SVD
k opt

, T )) k opt µ(RMSE(T̃ , T )) case name

5 0.2935 1 0.2908

10 0.3547 1 0.3591

15 0.3457 1 0.3344

20 0.3801 1 0.3726

25 0.3701 5 0.3789

30 0.3442 16 0.3771 case B

35 0.3982 2 0.3964

40 0.4053 3 0.4068 case A

data use study. Although the rank of the low-rank approximation response ma-

trix by matrix decomposition corresponding to �̂ is extremely smaller than the

rank of the observed response matrix �, the predictive ability of IRT seems to

be high enough since the RMSE(T̃ SVD
k opt

, T ) is almost equal to µ(RMSE(T̃ , T )).

In other words, if the size of the item response matrix is moderate, i.e., less

than 1000 users and less than 100 items, it would be di�cult to obtain more

information than IRT produces from the observed item response matrix alone

using the matrix decomposition method.

8. Concluding Remarks

This paper investigated the reliability of item response theory itself from

matrix decomposition perspective.

The maximum likelihood estimates for the parameters in item response the-

ory are obtained by the observed item response matrix. Using the estimates,

the estimated item response matrix can be reconstructed, and how close the

observed and estimated matrices are can be measured by using the root mean

squared error. Matrix decomposition and singular value decomposition methods

can generate a low-rank approximation matrix from the observed item response

20

変わらない

29

8ケース

汎用性の高い評価法IRTそのものをどう評価するか

本日のテーマ

応答マトリクスから評価すると

30



IRTの推定能力は
応答マトリクスサイズが中規模以下（n=100, m=50）なら、
IRTの推定応答マトリクスの再現能力は特異値分解のそれと同
程度（マトリクスのランクはどちらもかなり小さい）

応答マトリクスサイズが大規模（n=1000, m=100）なら、
IRTの推定応答マトリクスの再現能力は特異値分解のそれより
悪い（マトリクス分解のマトリクスのランクが大きくなる）

IRTによる推定能力は推定の限界近くまで達している

IRTの推定能力はかなり高いが 
IRT以外の推定方法を確立できる余地は残されている

31

特異値分解から見た項目反応理論の新評価

廣瀬英雄 
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