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Science: Oxford Dictionary

Definition (SCIENCE)

The intellectual and practical activity encompassing the
systematic study of the structure and behaviour of the
physical and natural world through observation and
experiment.

Q a particular area of science.

@ a systematically organized body of knowledge on a
particular subject.

@ archaic knowledge of any kind.
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Science: Wikipedia

https://en.wikipedia.org/wiki/Science

Definition (SCIENCE)

Science (from the Latin word scientia, meaning “knowledge”) is a
systematic enterprise that builds and organizes knowledge in the form
of testable explanations and predictions about the universe.

Modern science is typically divided into three major branches.
Q natural sciences (e.g., biology, chemistry, and physics);
@ social sciences (e.g., economics, psychology, and sociology)

@ formal sciences (e.g., logic, mathematics, and theoretical
computer science).

Disciplines that use existing scientific knowledge for practical purposes,
such as engineering and medicine, are described as applied sciences.

v
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Mode 1 Science ve
Gibbons, M. et al. (1994, pp.3-8) The New Production of Knowledge: The Dynam (7/‘

and Research in Contemporary Societies. Sage Publications.

Definition (Mode 1 Science)

The essential ingredients of Mode 1 Science are
© academic context;

@ disciplinary;

@ homogeneity;

© autonomy;

@ traditional quality control(peer review),
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Science: Tukey (1962)

John W Tukey (1962). The future of data analysis. AMS, 1-67.

4. Sciences, mathematics, and the arts. The extreme cases of science and art
are clearly distinguished, but, as the case of the student who was eligible for
Phi Beta Kappa because mathematics was humanistic and for Sigma Xi be-
cause it was scientific shows, the place of mathematics is often far from clear.
There should be little surprise that many find the places of statistics and data
analysis still less clear.

There are diverse views as to what makes a science, but three constituents
will be judged essential by most, viz:

(al) intellectual content,

(a2) organization into an understandable form,

(a3) reliance upon the test of experience as the ultimate standard of valid-
ity.
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“Data Analysis” as Science

John W Tukey (1962). The future of data analysis. AMS, 1-67.

I. GENERAL CONSIDERATIONS

1. Introduction. For a long time I have thought I was a statistician, interested
in inferences from the particular to the general. But as I have watched mathe-
matical statistics evolve, I have had cause to wonder and to doubt. And when I
have pondered about why such techniques as the spectrum analysis of time
series have proved so useful, it has become clear that their ‘‘dealing with fluc-
tuations” aspects are, in many circumstances, of lesser importance than the
aspects that would already have been required to deal effectively with the
simpler case of very extensive data, where fluctuations would no longer be a
problem. All in all, I have come to feel that my central interest is in data analy-
sis, which I take to include, among other things: procedures for analyzing data,
techniques for interpreting the results of such procedures, ways of planning the
gathering of data to make its analysis easier, more precise or more accurate, and
all the machinery and results of (mathematical) statistics which apply to analyz-
ing data.
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Huber (2011) on Tukey (1962)

Peter J. Huber (2011). Data Analysis: What Can Be Learned From the Past 50 Ye:

WILEY SERIES IN PROBABILITY AND STATISTICS

Data Analysis

What Can Be Learned from
the Past 50 Years

Peter J. Huber

WWILEY
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Huber on Tukey

Peter J. Huber (2011). Data Analysis: What Can Be Learned From the Past 50 Ye{

Half a century ago, Tukey, in an ultimately enormously
influential paper redefined our subject... [The paper]
introduced the term “data analysis” as a name for what
applied statisticians do, differentiating this term from
formal statistical inference. But actually, as Tukey

admitted, he “stretched the term beyond its philology”
to such an extent that it comprised all of statistics.
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Driving Forces on Tukey's “Data Analysis”

David Donoho (2015,
https://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf)

Tukey identified four driving forces in the new science:

@ The formal theories of statistics;

@ Accelerating developments in computers and display
devices;

@ The challenge, in many fields, of more and ever larger
bodies of data;

© The emphasis on quantification in an ever wider variety
of disciplines.
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Science and Data Science

Tiataal

Science and-datasgen

David M. Blei*" and Padhraic Smyth®*

David M. Bleia and Padhraic Smythd (2917). PNAS, 114(33), 8689-8692.
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Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved June 16, 2017 (received for review March 15, 2017)

Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions
and insights. In this article, we ask why scientists should care about data science. To answer, we discuss
data science from three perspectives: statistical, computational, and human. Although each of the three is

a critical component of data science, we argue that the effective combination of all three components is

the essence of what data science is about.

data science | statistics | machine learning

The term "data science” has attracted a lot of attention.
Much of this attention is in business (1), in government
(2), and in the academic areas of statistics (3, 4) and
computer science (5, 6). Here, we discuss data science
from the perspective of scientific research. What is data
science? Why might scientists care about it?

Our perspective is that data science is the child of
statistics and computer science. While it has inherited
some of their methods and thinking, it also seeks to
blend them, refocus them, and develop them to

Data Science as Mode 2 Science

help them more effectively navigate and understand
the contours of society, finding relevant sources to
their work and identifying hard to spot pattems of
language that suggest new interpretations and theo-
ries. Third, modern telescopes create digital sky sur-
veys that have transformed observational astronomy,
generating hundreds of terabytes of raw image data
about billions of sky objects. A catalog of these ob-
jects, if available, would give astronomers an unprec-
edented window into the structure of the cosmos.

Yokohama City University

YEVATHD,

13/ 53



nce through Data Science (1/2)

July 12,2

Data sci is sci ’s d chance to get causal inference right.

A classification of data science tasks

Miguel A. Hernan,'? John Hsu**, Brian Healy™>°

Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public
Health, Boston, MA

Harvard-MIT Division of Health Sciences and Technology, Boston, MA

Mongan Institute, Massachusetts General Hospital, Boston, MA

Department of Health Care Policy, Harvard Medical School, Boston, MA
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Department of Neurology, Harvard Medical School, Partners MS Center, Brigham and
‘Women’s Hospital, Boston, MA

6. Biostatistics Center, Massachusetts General Hospital, Boston, MA

Correspondence: Miguel Hernan, Department of Epidemiology, Harvard T.H. Chan School of
Public Health, 677 Huntington Avenue, Boston, MA 02115; email:

miguel_hernan@post.harvard.edu
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Causal inference from observational data is the goal of many data analyses in the health
and social sciences. However, academic statistics has often frowned upon data analyses with a

causal objective. The introduction of the term “data science” provides a historical opportunity to

redefine data analysis in such a way that it naturally accommodates causal inference from

observational data.

Like others before, we organize the scientific contributions of data science into three
classes of tasks: description, prediction, and causal inference. An explicit classification of data
science tasks is necessary to discuss the data, assumptions, and analytics required to successfully
accomplish each task.

We argue that a failure to adequately describe the role of subject-matter expert
knowledge in data analysis is a source of widespread misunderstandings about data science.

Specifically, causal analyses typically require not only good data and algorithms, but also

domain expert knowledge. We discuss the implications for the use of data science to guide
decision-making in the real world and to train data scientists.
TRBITISE T L RIGMBOERM
B [SHT 2REORMIE,
[T—8HA TR IZETHRBLEVREORRTHS.
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Mode 2 Science s
Gibbons, M. et al. (1994, pp.3-8) The New Production of Knowledge: The Dynam (7/‘

and Research in Contemporary Societies. Sage Publications.

Definition (Mode 2 Science)

The essential ingredients of production of knowledge by
Mode 2 Science are

Q@ context of application;

@ transdisciplinary;

O heterogeneity/diversity;

0 reflexivity/social accountability;
@ novel quality control source.
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Mode 1 vs. Mode 2 Science

Mode 1 Mode 2
Problem Academic context Context of application
Relation with Disciplinary ransdisciplinary

other displines

Institute Homogeneity Heterogeneity
Goal Autonomy Reflexivity /social accountability
(social accountability)
Criterion Traditional quality control Novel quality control

(peer review)
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More DA and Communications

John W Tukey (1962). The future of data analysis. AMS, 1-67.

masters of the field. “Data analysts”, even if professional statisticians, will
have had far less exposure to professional data analysts during their training.
Three reasons for this hold today and can at best be altered slowly:
(el) Statistics tends to be taught as part of mathematics.
(¢2) In learning statistics per se there has been limited attention to data
analysis.
(¢3) The number of years of intimate and vigorous contact with profes-
sionals is far less for statistics Ph.D.’s than for physics (or mathematics)
Ph.D.’s.
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How to Teach DA: Tukey (1962)

John W Tukey (1962). The future of data analysis. AMS, 1-67.

Data analysis, and the parts of statistics which adhere to it, must then take

on the characteristics of a science rather than those of mathematics, specifically:

(b1) Data analysis must seek for scope and usefulness rather than security.

(b2) Data analysis must be willing to err moderately often in order that
inadequate evidence shall more often suggest the right answer.

(b3) Data analysis must use mathematical argument and mathematical

results as bases for judgment rather than as bases for proof or stamps of valid-

ity.
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Data Science Club:
Learning by Practicing
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Sports Data Competition
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Data Science PBL for Juniors




Industry and Government Oriented Problems
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PBL Programs
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Practical Data Science

in Master's Program




Curriculum of Master in Data Science

DSEX BLaiREAYF25 AL EAERE UBRRBME X O AEBANK

M1 M1 Lif M2

MELEH (2) BEFESR (2

T BENS (1) FITIVIV IR (2)
GRREY (1)
(HEBERLE)
STREHMIS | | BRCOBRERS ||| WRNF—SBy || BrEET -8B ||
L) B (2) wim (2) HR (2)

ER - HFHARBE (2)

i

BB CERM | | BERENR 2
i (2)
(FHE®N2HLE)

@
239KavEa €y 77 HR LT
—7 1y IER @ BEER (2) ®0Q
)

FITFUT Y ARAER - T TY YT UV IRBR - T -5 Y1 Y AEARAER (EPEAS) )

TN 1 30 B

OFFIME - HAEE @ 148 PDS(RE)6BML. ¥ I/ELRI(AE)SHAM
OLERE  16H U WR/RB (D) SN, WAIRB(ER) 8BUMNLE

c FRAFERNKROSWEENB G, SRHNBESHE10MLET S

33 /53

nce as Mode 2 Science Yokohama City

ersity



PDS Based on John Dewey's Structured Reﬂectiv
—d

Thinking

(1) =&
DFRH
/Scientific
Questions

(5) IRERD

FREE Eval-

uation/Re-
porting

(4) 1R5%

DFFY) £
i¥/Val-
idation

Data Science as Mode 2 Science

(2) HIRE
MDERHE
{t/Mung-
ing/Data
Explo-
ration

(3) 1R
DIRE
/Modelling

Yokohama City University



Practical Data Science |
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Data Science for Sustainable Insurance
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] (1I-1. Modelling )

* linear model

I3 - generalized

linear model

* discriminant
analysis

"3 - clustering

* principal com-

/ ponent analysis
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I1-2. Data
Exploration

_| descriptive

statistics
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4% visualization

_| application of
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( 11I-2. Modelling )

( IV-1. Inference )

>
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- Bayesian
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% model selection
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PDS for Sustainable Insurance (lII)

( 111-3. Modelling )
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