
監督、なぜヘディングをしないと怒るのですか?

1.疑問

近年、世界では「子供の時からヘディングをすると頭に繰 り返し衝撃が加わることで、脳に影響が出るかもしれな い|というイギリスで一昨年発表された調査結果に基づき、 小中学生のヘディングを禁止する国が出てきている。

試合になると監督な どは、競らない選手 に対して結構怒る。

試合中でのヘディングが重要ということがわかる。

ではなぜ競らないことに怒るのか?

監督などは、ヘディングに勝利することがゴールにつながり、 チームの勝利につながると考えているからだろう。

しかし、これは本当なのだろうか?

2.分析

分析1.1

ステップ1 どうしたらヘディングに勝てるのか?

> 世の中の一般論である「身長が高いほど、 空中戦の勝率がupする」は本当なのか?

	係数	t	P-値
切片	0.408884	127.6847	0
身長	0.030139	9.411534	7.47E-21

結果1.1

この一般論が正しいとは 一概に言うことが出来ない。

分析1.2 空中戦においては、跳ぶ前から体を当てるなど しているため、「体重が重いほど、空中戦勝率 が上がる」と仮説を立てる。

た独立変数を身長と体重、従属変数を空中戦勝率にして重回帰分析をしたものと比較する

(1)回帰分析	

	係数	t	P-値
切片	0.408884	127.4365	0
体重	0.026859	8.371262	7.45E-17
(2)重回帰分	分析		
	係数	t	P-値

切片	0.408884	127.4365	0
体重	0.026859	8.371262	7.45E-17
(2)重回帰分	分析		
	係数	t	P-値
切片	0.408884	127.6814	0
身長	0.025794	4.357335	1.34E-05
体重	0.005166	0.872643	0.382903

結果1.2

空中戦勝率は、体重と比 べて身長がより深く関 わっているため、仮説は 成り立たない。

バルセロナ元主将のDF フ ジョル選手(178cm 80kg) 分析1.3

は、高いジャンプ力と、強靭なフィジカルによって、身長 がDFの中では比較的低いながらも、空中戦を制してきた。 そこで我々は、身長と体重の両方の要素を含んだBMに 目を付けた。「BMIが高いほど、空中戦勝率がupする」と いう仮説を立てる。

独立変数をBMI、従属変数を空中戦勝率にして回帰分析をする。 また独立変数を身長とBMI、従属変数を空中戦勝率にして重回帰分析をしたものと比較する。

(1)回帰分	忻		
	係数	t	P-値
切片	0.261073	3.971823	7.24E-05
ВМІ	0.006503	2.251438	0.024404
(2)重回帰?	分析		
	係数	t值	P値
切片	0.408884	127.7051	0
BMI	0.005078	1.581589	0.113811
身長	0.029764	9.270694	2.76E-20

結果1.3

身長のみの場合と比べると、 よりばらけてしまった。空 |中戦は、身長のみをもとに して考えるほうが、合理的 なのかもしれない。

分析1.3+α

しかし我々はBMIにこだわった。「BMIがある数 値を超えると空中戦で勝ちやすくなる」と考え、 結果をはっきり出せるように右表の4段階に分類 して、ピボットテーブルにかけて分析してみた。

MI<18.5	低体重
8.5<=BMI<22	普通(標準以下)
2<=BMI<25	普通(標準以上)
5<=BMI	肥満(1度)

	低体重		肥満(1度)	普通(標準 以下)	普通(標準以上)
空中戦平均勝率	0.	00%	42.83%	39.51%	41.319
空中戦(敵陣) 平均勝率	0.	00%	37.32%	36.02%	38.22%
空中戦(敵陣PA 内)平均勝率	0.	00%	36.07%	28.95%	32.29%
空中戦(自陣) 平均勝率	0.	00%	46.58%	39.86%	42.76%
空中戦(自陣PA 内)平均勝率	0.	00%	41.25%	30.39%	35.24%

結果 $1.3 + \alpha$

BMI25以上の選手の空中戦勝率 がずば抜けて高い。ここで、先 ほど例に出したプジョル選手は、 BMI25以上で空中戦勝率が高い。 これらから、「BMI25以上の選 手は空中戦勝率が高い」という ことが考えられる。

ステップ1の考察

プロの世界において、"BMI25"が空中戦の勝敗を変える 一つの指標になる。

どのようにしたらヘディングとゴールが ステップ2 つながるのか?

分析2.1

ヘディングシュートにおいては、「BMIが高いほどヘディングシュート決定 がupする」と仮説を立てる。

独立変数をBMI、従属変数をヘディングシュート決定率にして回帰分析をする。

	係数	t	P-値	結果2.1
切片	0.116781	28.48318	1.3E-156	マの仮説が成り立つとは言いがたい
ВМІ	0.008496	2.065566	0.038963	この仮説が成り立つとは言いがたい

分析2.1+α

結果 $1.3 + \alpha$ よりBMI25以上なら空中戦勝率がupしていたため、 の選手はヘディングシュートの決定率が高い」という仮説を立てる。 ピボットテーブルを用いてヘディングシュート平均決定率を分類する。

		0m >++ /4	***	* > 7 (1=12+1).1
	低体重	肥満(I 度)	普通(標準以下)	普通(標準以上)
ヘディング				
シュート平均決	0.00%	10.49%	6.85%	8.46%

結果 $2.1 + \alpha$

BMI25以上の選手はヘディング シュートの決定率が高いことがわか

分析2.2

ゴールキックやフリーキックなどでロングボールを競る場合 は競るのではなく、その は、BMI25 に回る方がよいのか?

(1)空中戦勝率と足元の技術力

先ほどまでの結果より、BMI25未満の選手は空中戦で負けやすい。 そのため、我々は「BMI25未満の選手は、足元の技術力(パスやドリ ブルなど)が高い」と考え、空中戦勝率を10%ごとに分けて、ピボッ トテーブルで分析した。

	0%台	10%台	20%台	30%台	40%台	50%台	60%台	70%台	80%台	100%
パス(セットプレー除く)平均成功率	0.737	0.723	0.714	0.717	0.715	0.728	0.732	0.719	0.692	0.755
ドリブル平均成功率	0.417	0.45	0.445	0.435	0.431	0.419	0.38	0.313	0.192	0.063
スルーパス平均成功率	0.434	0.453	0.497	0.468	0.439	0.407	0.392	0.275	0.289	0.313

(1)の結果

分析1.3+αのピボットテーブルより空中戦平均勝率を40%と考えると、空 中戦平均勝率0%台~30%台のスルーパスやドリブルの成功率が、空中戦平 均勝率40%台~100%より比較的高いことがわかる。そのため、我々の予想 はほぼ正しいので、空中戦勝率が低いと、足元の技術力が高くなるといえる。

(2)足元の技術力と

敵陣ペナルティーエリア外からのシュートの決定率 まず基本的に、MFにはパサーやドリブラーのような選手がおり、とくにパ サーの選手は、ビルドアップや味方のサポートのために敵陣ペナルティーエ リア外にいることが多い。そのため「敵陣ペナルティーエリア外からの シュートの決定率が高い」と我々は予想した。

	係数	P-値
切片	0.033821	1.32E-93
ドリブル成功率	0.001157	0.541891
スルーパス成功率	0.005001	0.017066
パス成功率	-0.00636	8.57E-05

(2)の結果

我々の予想はほぼ間違いで、足元 の技術力が高いとしてもペナル ティーエリア外からのシュートの 決定率が高くなるとは限らない。

(3)空中戦勝率と

敵陣ペナルティーエリア外からのシュートの決定率 (1)と(2)よりBMI25未満の選手は必ずしも「空中戦勝率が低いと足元の技術力 が高くなるが、敵陣ペナルティーエリア外からのシュートの決定率が高くな る」とはいえない。では「空中戦勝率が高いほど、敵陣ペナルティーエリア外 からのシュートの決定率が高くなる」という仮説を立てる。

	係数	P-値
切片	0.036594	2.3E-107
空中戦勝率	-0.01155	1.94E-06

(3)の結果 この仮説は、場合によっ て成り立つ

結果2.2

BMI25未満の選手は、競るか競らないかは時と場合によって判断すると

ステップ2の考察

BMI25以上の選手の方がゴールを決めやすい。

・プロの世界において、空中戦の勝率をあげる方法

→ BMIを25以上にする → 体重を増やさなければならない

身長がある程度伸びてから筋肉量をふやす(※子供の うちは筋肉をつけすぎると、身長が伸びづらくなって しまう。)のが、空中戦を戦う上で得策である。

・あらかじめ相手の大体のBMIの値を見定めて、自分のマッ チアップする相手よりBMIが高いという構図(⇒ 空中戦に勝つことができる 作る

・BMI25未満の選手が競る準備が出来ているときは競った方 がいいものの、体勢が崩れているなど競る準備が出来ていな いときは、セカンドボールを拾うことを目的にするといい。

監督「おまえそこ競れよ」

選手「監督、競る人の のことも考えた上でそのこといってくださいよ。 試合状況だけでなく選手個人のことも把握してやらないと、強くなれな いっすよ!」

監督「いいから黙って競れや!」

データを提供していただき、このような機会を与えてくださった、情報・シス テム研究機構 統計 数理研究所 医療健康データ科学研究センター様、データス タジアム 株式会社様、並びに指導をして いただいた名古屋市立大学 奥田真也 教授、本校の先生方にお礼申し上げます

参考文献と写真

BMI | e-ヘルスネット(厚生労働省) (mhlw.go.jp) News Up 子どものヘディング 危険なの? | サッカー | NHKニュース カルレス・プジョル – Wikipedia

Google 画像検索結果